, Volume 39, Issue 2, pp 215–234 | Cite as

Exploring traffic flow databases using space-time plots and data cubes



Local departments of transportation and metropolitan planning organizations have been collecting traffic data for many decades. However, these data are rarely exploited to their full potential. In this paper, we describe an exploratory visualization toolkit for large traffic flow databases. The visualization toolkit is based on the concept of the traffic cube: an extension of the data cube in data mining. The traffic cube organizes traffic flow data across different spatial and temporal dimensions and with respect to user-specified aggregation levels. The toolkit allows the user to perform data cube operations to select, summarize and cross-tabulate the traffic data prior to visualization as two-dimensional space-time plots. We demonstrate a prototype system using MATLAB, ArcGIS and MS Access database software. Example visualizations of a large database of hourly traffic flows along major highways in the state of Utah (USA) over a 10-year period illustrate the potential for the toolkit to reveal patterns about traffic flows and trends hidden in the database.


Traffic data Visualization Exploratory analysis Space-time plots Data cubes Traffic cubes 


  1. Adriaans, P., Zantinge, D.: Data Mining. Addison-Wesley, Harlow, UK (1996)Google Scholar
  2. Cho, H.-J., Jou, Y.-J., Lan, C.-L.: Time dependent origin-destination estimation from traffic count without prior information. Networks Spatial Econ. 9, 145–170 (2009)CrossRefGoogle Scholar
  3. Daganzo, C.F.: Fundamentals of Transportation and Traffic Operations. Elsevier Science, Oxford (1997)Google Scholar
  4. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery: an overview. In: Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 1–30. AAAI Press, Menlo Park, CA (1996)Google Scholar
  5. Fayyad, U., Grinstein, G., Wierse, A.: Information Visualization in Data Mining and Knowledge Discovery. Morgan Kaufmann, San Matel, CA (2001)Google Scholar
  6. FHWA: Traffic detector handbook: third edition, federal highway administration. U.S. Department of Transportation, Publication Number: FHWA-HRT-06-139, October 2006. (2006). Accessed 18 April 2011
  7. Gahegan, M.: The case for inductive and visual techniques in the analysis of spatial data. J. Geogr. Syst. 2, 77–83 (2000)CrossRefGoogle Scholar
  8. Gahegan, M.: Visual exploration and explanation in geography: analysis with light. In: Miller, H.J., Han, J. (eds.) Geographic Data Mining and Knowledge Discovery, 2nd edn, pp. 291–324. Taylor and Francis, London (2009)CrossRefGoogle Scholar
  9. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow, F., Pirahesh, H.: Data cube: a relational aggregation operator generalizing group-by, cross-tab and sub-totals. Data Min. Knowl. Disc. 1, 29–53 (1997)CrossRefGoogle Scholar
  10. Guo, D.: Multivariate spatial clustering and visualization. In: Miller, H.J., Han, J. (eds.) Geographic Data Mining and Knowledge Discovery, 2nd edition edn, pp. 325–345. Taylor and Francis, London (2009)CrossRefGoogle Scholar
  11. Han, J.W., Kamber, J.: Data mining: concept and techniques, 2nd edn, pp. xxi, 1–40, 105–157, and 600–614. Elsevier Inc. (2006)Google Scholar
  12. Harinarayan, V., Rajaramna, A., Ullman, J.D.: Implementing data cubes efficiently. SIGMOD Record 25, 205–216 (1996)CrossRefGoogle Scholar
  13. Keim, D.A., Kriegel, H.-P.: Using visualization to support data mining of large existing databases. In: Lee, J.P., Grinstein, G.G. (eds.) Database Issues for Data Visualization, Lecture Notes in Computer Science, vol. 871, pp. 210–229 (1994).Google Scholar
  14. Lu, C.-T., Boedihardjo, A.P., Shekhar, S.: Analysis of spatial data with map cubes: highway traffic data. In: Miller, H.J., Han, J. (eds.) Geographic Data Mining and Knowledge Discovery, 2nd edition edn, pp. 69–97. Taylor and Francis, London (2009)Google Scholar
  15. McCormick, S., Thomas, J.: The Fast Adaptive Composite Grid (FAC) method for elliptic equations. Math. Comput. 46–174, 439–456 (1986)Google Scholar
  16. Meinhardt, H.: Models of Biological Pattern Formation. Academic Press, London (1982)Google Scholar
  17. Miller, H.J., Han, J.: Geographic data mining and knowledge discovery: an overview. In: Miller, H.J., Han, J. (eds.) Geographic Data Mining and Knowledge Discovery, 2nd edition edn, pp. 1–26. Taylor & Francis, London (2009)CrossRefGoogle Scholar
  18. Mohania, M., et al.: Advances and research directions in data-warehousing technology. Aust. J. Inform. Syst. 7–1, 41–59 (1999)Google Scholar
  19. Nagel, K., Wolf, D.E., Wagner, P., Simon, P.: Two-lane traffic rules for cellular automata: a systematic approach. Phys. Rev. E 58, 1425–1437 (1998)CrossRefGoogle Scholar
  20. Nagel, K., Wagner, P., Woesler, R.: Still flowing: old and new approaches for traffic flow modeling. Oper. Res. 51, 681–710 (2003)CrossRefGoogle Scholar
  21. Nicolai, T., Carr, D., Weiland, S.K., Duhme, H., von Ehrenstein, O., Wagner, C., von Mutius, E.: Urban traffic and pollutant exposure related to respiratory outcomes and atopy in a large sample of children. Eur. Respir. J. 21, 956–963 (2003)CrossRefGoogle Scholar
  22. OLAP Council: OLAP and OLAP server definitions (1995)Google Scholar
  23. Prasher, S., Zhou, X.: Multiresolution amalgamation: dynamic spatial data cube generation. In: Proceedings of 15th Australasian Database Conference (ADC 2004), Dunedin, New Zealand, pp. 103–111 (2004)Google Scholar
  24. Rao, F., Zhang, L., Yu, X.L., Li, Y., Chen, Y.: Spatial hierarchy and OLAP-favored search in spatial data warehouse. In: Proceedings of the 6th ACM international workshop on data warehousing and OLAP, pp. 48–55 (2003) Google Scholar
  25. Shekhar, S., Lu, C.T., Liu, R., Zhou, C.: CubeView: a system for traffic data visualization. intelligent transportation systems. In: Proceedings of the Fifth IEEE International Conference on Intelligent Transportation Systems, pp. 674–679 (2002)Google Scholar
  26. Shekhar, S., Lu, C.T., Tan, X., Chawla, S., Vatsavai, R.R.: Map cube: a visualization tool for spatial data warehouses. In: Miller, H., Han, J. (eds.) Geographic Data Mining and Knowledge Discovery, pp. 74–109. Taylor & Francis (2001)Google Scholar
  27. Skupin, A., Fabrikant, S.: Spatialization. In: Wilson, J., Fotheringham, S. (eds.) The Handbook of Geographical Information Science, pp. 61–79. Blackwell Publishing, London (2008)Google Scholar
  28. Stefanovic, N., Han, J., Koperski, K.: Object-based selective materialization for efficient implementation of spatial data cube. IEEE Trans. Knowl. Data Eng. 12–6, 938–958 (2000)CrossRefGoogle Scholar
  29. Transportation Research Board (2009) Special Report 260: Strategic Highway Research: Saving Lives, Reducing Congestion, Improving Quality of LifeGoogle Scholar
  30. Treiber, M., Helbing, D.: Reconstructing the spatio-temporal traffic dynamics from stationary detector data. Cooperative Transportation Dynamics, 1, 3.1–3.24 (online journal; (2002)
  31. Zhuang, J., Ogata, Y., Vere-Jones, D.: Stochastic declustering of space-time earthquake occurrences. J. Am. Stat. Assoc. 97, 369–380 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Department of GeographyUniversity of UtahSalt Lake CityUSA

Personalised recommendations