, Volume 37, Issue 1, pp 15–38 | Cite as

Dynamic model of activity-type choice and scheduling

  • Cinzia Cirillo
  • Kay W. Axhausen


This paper presents a model for the choice of activity-type and timing, incorporating the dynamics of scheduling, estimated on a six-week travel diary. The main focus of the study is the inclusion of past history of activity involvement and its influence on current activity choice. The econometric formulation adopted, explicitly accounts both for correlation across alternatives and for state dependency. The results indicate that behavioral variables are superior to socio-economic variables and that consideration of the correlation pattern over alternatives clearly improves the fit of the model. This is a first but significant contribution to changing the current static demand models into dynamic activity based ones. The availability of other multi-week travel surveys and the progress made recently on advanced econometric techniques should encourage the transferability of this study to different regions or model scale.


Activity involvement Past history Multi-week travel diary 


  1. Arentze, T.A., Timmermans, H.J.P.: Albatross: a learning based transportation oriented simulation system. EIRASS (2000)Google Scholar
  2. Arentze, T.A., Timmermans, H.J.P.: A learning-based transportation oriented simulation system. Transp. Res. Part B 38(7), 613–633 (2004)CrossRefGoogle Scholar
  3. Axhausen, K.W., Zimmermann, A., Schönfelder, S., Rindsfüser, G., Haupt, T.: Observing the rhythms of daily life: a six-week travel diary. Transportation 29(2), 95–124 (2002)CrossRefGoogle Scholar
  4. Axhausen, K.W., Löchl, M., Schlich, R., Buhl, T., Widmer, P.: Fatigue in long duration surveys. Transportation 34(2), 143–160 (2007)CrossRefGoogle Scholar
  5. Bastin, F., Cirillo, C., Toint, P.L.: Application of an adaptive Monte Carlo algorithm to mixed logit estimation. Transp. Res. B 40(7), 577–593 (2006)CrossRefGoogle Scholar
  6. Ben-Akiva, M., Lerman, S.R.: Discrete choice analysis: theory and application to travel demand. MIT Press, Cambridge (1985)Google Scholar
  7. Bhat, C.R., Singh, S.K.: A comprehensive daily activity-travel generation model system for workers. Transp. Res. A 34(1), 1–22 (2000)CrossRefGoogle Scholar
  8. Bhat, C.R.: A generalized multiple durations proportional hazard model with an application to activity behavior during the work-to-home commute. Transp. Res. Part B 30(6), 465–480 (1996)CrossRefGoogle Scholar
  9. Bhat, C.R., Srinivasan, S.: A multidimensional mixed ordered-response model for analyzing weekend activity participation. Transp. Res. Part B 39(3), 255–278 (2005)CrossRefGoogle Scholar
  10. Bhat, C.R., Guo, J.Y., Srinivasan, S., Sivakumar, A.: Comprehensive econometric microsimulator for daily activity-travel patterns. Transp. Res. Rec. 1894, 57–66 (2004)CrossRefGoogle Scholar
  11. Bowman, J.L., Ben-Akiva, M.: Activity-based disaggregate travel demand model system with activity schedules. Transp. Res. A 35(1), 1–28 (2000)Google Scholar
  12. Buliung, R.N.: Activity/travel behavior research: approach and findings with identification of research themes and emerging methods. Working paper series. McMaster University (2005)Google Scholar
  13. Cherchi, E., Cirillo, C.: A mixed logit mode choice model on panel data: accounting for systematic and random variations on responses and preferences, Proceedings of the 87th TRB meeting Washington DC (2007)Google Scholar
  14. Cirillo, C., Axhausen, K.W.: Evidence on the distribution of values of travel time savings from a six-week travel diary. Transp. Res. A 40(5), 444–457 (2006)Google Scholar
  15. Cirillo, C., Toint, Ph. L.: A multinational comparison of travel behaviour using an activity-based approach. Working paper Transportation Research Group, FUNDP, Namur (2001)Google Scholar
  16. Golob, T.F.: A simultaneous model of household activity participation and trip chain generation. Transp. Res. 34B(5), 355–376 (2000)CrossRefGoogle Scholar
  17. Goodwin, P.B., Mogridge, J.H.: Hypothesis for a fully dynamic model of car ownership. Int J Transp Econ 8(3), 313–326 (1981)Google Scholar
  18. Hamed, M.M., Mannering, F.L.: Modeling travelers’ postwork activity involvement: toward a new methodology. Transp. Sci. 27(4), 381–394 (1993)CrossRefGoogle Scholar
  19. Heckman, J.: The incidental parameters problem and the problem of initial condition in estimating a discrete time–discrete data stochastic process. In: Manski, C., McFadden, D. (eds.) Structural analysis of discrete data with econometric applications, pp. 179–185. MIT Press, Cambridge (1981a)Google Scholar
  20. Heckman, J.: Statistical models for the analysis of discrete panel data. In: Manski, C., McFadden, D. (eds.) Structural analysis of discrete data with econometric applications, pp. 114–178. MIT Press, Cambridge (1981b)Google Scholar
  21. Heckman, J., Singer, B.: Econometric analysis of longitudinal data. In: Griliches, Z., Intriligator, M. (eds.) Handbook of econometrics, pp. 1689–1763. North-Holland, Amsterdam (1986)Google Scholar
  22. Hirsh, M., Prashker, J., Ben-Akiva, M.: Dynamic model of weekly activity pattern. Transp. Sci. 20(1), 24–36 (1986)CrossRefGoogle Scholar
  23. Habib, K.M.N., Miller, E.J.: Modelling daily travel-activity program generation considering within-day and day-to-day dynamics. Transportation 35, 487–848 (2008)CrossRefGoogle Scholar
  24. Kitamura, R.: A dynamic model system of car ownership, trip generation and modal split: model development and simulation experiments. In the proceedings of the 14th Australian road research board conference, Part 3, 96–111. Australian Road Research Board, Vermont South, Victoria (1988)Google Scholar
  25. Kitamura, R., Bunch, D.S.: Heterogeneity and state dependence in household car ownership: a panel analysis using ordered-response probit models with error components. Transp. Traffic Theory 52, 477–496 (1990)Google Scholar
  26. Kockelman, K.M.: Application of a utility-theory-consistent system of demand equations approach to household activity travel choice. Paper presented at the 78th Annual Meeting of the Transportation Research Board, Washington, DC, January 10–14 (1999)Google Scholar
  27. Lu, X., Pas, E.I.: Socio-demographics, activity participation and travel behavior. Transp. Res. Part A 33, 1–18 (1999)CrossRefGoogle Scholar
  28. Ma, J. and K.G. Goulias.: Application of Poisson regression models to activity frequency analysis and prediction. Paper presented at the 78th Annual Meeting of the Transportation Research Board, Washington, DC, January 10–14 (1999)Google Scholar
  29. Mahmassani, H., Chang, G.L.: Experiments with departure-time choice dynamics of urban commuter. Transp. Res. B 20, 298–320 (1986)CrossRefGoogle Scholar
  30. Munizaga, M., Jara-Diaz, S., Greeven, P., Bhat, C.R.: Econometric calibration of the joint time assignment–mode choice model. Transp. Sci. 42(2), 208–219 (2008)CrossRefGoogle Scholar
  31. Nagel, K., Rickert, M.: Parallel implementation of the TRANSIMS microsimulation. Parallel Comput. 27(12), 1611–1639 (2001)CrossRefGoogle Scholar
  32. Pas, E.I., Sundar, S.: Intra-personal variability in daily urban travel behavior: some additional evidence. Transportation 22, 135–150 (1995)CrossRefGoogle Scholar
  33. Pendyala, R., Kitamura, R., Kikuchi, A.: FAMOS: The Florida Activity Mobility Simulator, Presented at the Conference on “Progress in Activity-Based Analysis”, Vaeshartelt Castle, Maastricht, The Netherlands, May 28–31 (2004)Google Scholar
  34. AG, P.T.V., Fell, B., Schönfelder, S., Axhausen, K.W.: Mobidrive questionaires, Arbeitsberichte Verkehrs-und Raumplanung, vol. 52. Institut für Verkehrsplanung, Transporttechnik, Strassen-und Eisenbahnbau, ETH Zürich, Zürich (2000)Google Scholar
  35. Ramadurai, G., Srinivasan, K.K.: Dynamics and variability in within-day mode choice decisions: role of state dependence, habit persistence, and unobserved heterogeneity. Transp. Res. Rec.: J. Transp. Res. Board 1977, 43–52 (2006)CrossRefGoogle Scholar
  36. Revelt, D., Train, K.: Mixed logit with repeated choices. Rev. Econ. Stat. 80(4), 647–657 (1998)CrossRefGoogle Scholar
  37. Salvini, P., Miller, E.J.: ILUTE: An operational prototype of a comprehensive microsimulation model of urban systems, Network and Spatial Economics, pp. 217–234 (2005)Google Scholar
  38. Schlich, R.: Verhaltenshomogene gruppen in längsschnitterhebungen, Dissertation, ETH Zürich, Zürich (2004)Google Scholar
  39. Schönfelder, S.: Urban rythms: modelling the rythms of individual travel behaviour. Department Bau, Umwelt und Geomatik, ETH, Zürich (2006)Google Scholar
  40. Srinivasan, K., Bhargavi, P.: Longer-term changes in mode choice decisions in Chennai: a comparison between cross-sectional and dynamic models. Transportation 34(3), 355–374 (2007)CrossRefGoogle Scholar
  41. Train, K.: Discrete choice analysis with simulations. Cambridge University Press, New York (2003)Google Scholar
  42. Walker, J.: Extended discrete choice models: integrated framework, flexible error structures, and latent variables. PhD Thesis MIT (2001)Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  1. 1.The University of MarylandCollege ParkUSA
  2. 2.IVT-ETH ZürichZürichSwitzerland

Personalised recommendations