Physical Oceanography

, Volume 21, Issue 6, pp 383–393 | Cite as

Dissipation of energy and vertical exchange in stratified basins caused by the shear instability in the field of quasiinertial internal waves

  • A. S. Samodurov
  • L. V. Globina

We determine the dependences of the rate of dissipation of turbulent energy and the coefficient of vertical turbulent diffusion caused by the shear instability and breaking in the field of inertial gravity internal waves in the ocean on the local buoyancy frequency. Within the framework of a unified approach, we explain the difference between these dependences observed for the areas of the main pycnocline and the upper stratified layer and mentioned in the literature. The indicated difference is explained by the fact that, unlike the region of the main pycnocline, the characteristic vertical scale of the instability of waves in the upper stratified layer depends on stratification. The analysis is performed on the basis of the model of climatic spectrum of internal waves in the ocean proposed by the authors somewhat earlier.


internal waves dissipation of turbulent energy turbulent diffusion stratified layers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Wunsch and R. Ferrari, “Vertical mixing, energy, and the general circulation of the ocean,” Ann. Rev. Fluid Mech., 36, 281–314 (2004).CrossRefGoogle Scholar
  2. 2.
    H. LeBlond and L. A. Mysak, Waves in the Ocean, Elsevier, Amsterdam (1978).Google Scholar
  3. 3.
    A. S. Samodurov, “A model of climatic spectrum of internal waves in the ocean,” Okeanologiya, 22, No. 2, 182–185 (1982).Google Scholar
  4. 4.
    A. S. Samodurov, A. A. Lyubitskii, and N. A. Panteleev, “Contribution of breaking internal waves to the structural formation, dissipation of energy, and vertical diffusion in the ocean,” Morsk. Gidrofiz. Zh., No. 3, 14–27 (1994).Google Scholar
  5. 5.
    C. H. McComas and P. Muller, “The dynamic balance of internal waves,” J. Phys. Oceanogr., 11, 970–986 (1981).CrossRefGoogle Scholar
  6. 6.
    F. S. Henyey, J. Wright, and S. M. Flatte, “Energy and action flow through the internal wave field: An eikonal approach,” J. Geophys. Res., 91, 8487–8495 (1986).CrossRefGoogle Scholar
  7. 7.
    K. B. Winters and E. A. D’Asaro, “Direct simulation of internal wave energy transfer,” J. Phys. Oceanogr., 27, 1937–1945 (1998).CrossRefGoogle Scholar
  8. 8.
    K. Polzin, “Statistics of the Richardson number: Mixing models and fine structure,” J. Phys. Oceanogr., 11, 1409–1425 (1996).CrossRefGoogle Scholar
  9. 9.
    B. Ferron, H. Mercier, K. G. Speer, et al. “Mixing in the Romanche Fracture Zone,” J. Phys. Oceanogr., 28, 1929–1945 (1998).CrossRefGoogle Scholar
  10. 10.
    E. Kunze, A. J. Williams III, and M. G. Briscoe, “Observations of shear and vertical stability from a neutrally buoyant float,” J. Geophys. Res., 95, 18,127–18,142 (1990).Google Scholar
  11. 11.
    T. R. Osborn, “Estimations of local rate of vertical diffusion from dissipation measurements,” J. Phys. Oceanogr., 10, 83–89 (1980).CrossRefGoogle Scholar
  12. 12.
    H. J. S. Fernando, “Oceanographic implications of laboratory experiments on diffusive interfaces,” J. Phys. Oceanogr., 19, 1707–1715 (1989).CrossRefGoogle Scholar
  13. 13.
    M. C. Gregg, “Scaling turbulent dissipation in the thermocline,” J. Geophys. Res., 94, No. C7, 9686–9698 (1989).CrossRefGoogle Scholar
  14. 14.
    A. E. Gargett and G. Holloway, “Dissipation and diffusion by internal wave breaking,” J. Mar. Res., 42, No. 1, 15–27 (1984).CrossRefGoogle Scholar
  15. 15.
    A. S. Monin, V. G. Neiman, and B. N. Filyushkin, “On the stratification of density in the ocean,” Dokl. Akad. Nauk SSSR, 191, No. 6, 1277–1279 (1970).Google Scholar
  16. 16.
    L. I. Ivanov and A. S. Samodurov, “The role of lateral fluxes in ventilation of the Black Sea,” J. Mar. Syst., 31, No. 1–3, 159–174 (2001).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  1. 1.Marine Hydrophysical InstituteUkrainian National Academy of SciencesSevastopolUkraine

Personalised recommendations