Advertisement

Physical Oceanography

, Volume 21, Issue 4, pp 245–253 | Cite as

Influence of ice compression on components of the velocity of motion of liquid under the ice cover in a traveling periodic flexural gravity wave of finite amplitude

  • Ant. A. Bukatov
  • O. M. Bukatova
Article

By the method of multiple scales, we obtain (to within the third order of smallness) the asymptotic expansions for the components of the velocity of motion of liquid under a floating ice cover in the process of propagation of periodic surface flexural gravity waves of finite amplitude under the conditions of ice compression. We study the dependences of the distributions of the velocity components along the wave profile on the compressive forces and the parameters of the initial harmonic. It is shown that the amplitude values of the velocity components decrease and the phase shift of oscillations increases as the compressiveforces increase.

Keywords

waves of finite amplitude flexural gravity waves motion of liquid particles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. G. Stokes, “On the theory of oscillatory waves,” Math. Phys. Pap. Cambr. Univ. Press, 1, 197–229 (1847).Google Scholar
  2. 2.
    L. N. Sretenskii, Theory of Wave Motions in Liquids [in Russian], ONTI, Moscow–Leningrad (1936).Google Scholar
  3. 3.
    S. V. Nesterov, “Excitation of waves of finite amplitude by traveling pressure systems,” Izv. Akad. Nauk SSSR. Fiz. Atmosf. Okean., 4, No. 10, 1123–1125 (1968).Google Scholar
  4. 4.
    J. N. Newman, Marine Hydrodynamics, MIT Press, Cambridge (1977).Google Scholar
  5. 5.
    M.S. Longuet-Higgins, “Lagrangian moments and mass transport in Stokes waves. Part 2. Water of finite depth,” J. Fluid Mech., 186, 321–336 (1988).CrossRefGoogle Scholar
  6. 6.
    Yu. Z. Aleshkov, Currents and Waves in the Ocean [in Russian], St.-Petersburg Univ., St. Petersburg (1996).Google Scholar
  7. 7.
    A. E. Bukatov and A. A. Bukatov, “Propagation of the surface waves of finite amplitude in a basin with floating broken ice,” Int. J. Offshore Polar Eng., 9, No. 3, 161–166 (1999).Google Scholar
  8. 8.
    Ant. A. Bukatov and And. A. Bukatov, “Velocities of motion of liquid particles under a floating ice cover in the process of propagation of periodic waves of finite amplitude,” Morsk. Gidrofiz. Zh., No. 1, 15–24 (2011).Google Scholar
  9. 9.
    D. E. Kheisin, Dynamics of Ice Cover [in Russian], Gidrometeoizdat, Leningrad (1967).Google Scholar
  10. 10.
    A. E. Bukatov, “Influence of longitudinal compression on the nonsteady oscillations of an elastic plate floating on the surface of liquid,” Prikl. Mekh., 17, No. 1, 93–98 (1981).Google Scholar
  11. 11.
    A. E. Bukatov and A. A. Bukatov, “Waves of finite amplitude in a homogeneous liquid with floating elastic plate,” Prikl. Mekh. Tekh. Fiz., 50, No. 5, 67–74 (2009).Google Scholar
  12. 12.
    A. H. Nayfeh, Perturbation Methods, Wiley, New York (1973).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • Ant. A. Bukatov
    • 1
  • O. M. Bukatova
    • 1
  1. 1.SevastopolUkraine

Personalised recommendations