Physical Oceanography

, Volume 20, Issue 6, pp 419–434 | Cite as

Space-and-time variability of the meridional heat transport in the north atlantic

Analysis of Observations and Methods for Calculating Hydrophysical Fields in the Ocean

We analyze the space-and-time variability of the meridional heat transport in the North Atlantic. The contribution of various mechanisms to the integral meridional heat transport (MHT) is estimated. The key role played by the drift transport of the Tropical Atlantic in the formation of the meridional oceanic heat transport is confirmed. On the basis of the general analysis of estimations obtained by various authors according to the data accumulated for 1870–2008 and the results of numerical analyses based on the data of NCEP/NCAR reanalysis, we show that the long-term average meridional drift heat (mass) transport attains its maximum values equal to (1.6 ± 0.1) PW [(17.4 ± 1.5) Sv] in the vicinity of 12.5°N in the Tropical Atlantic. The contribution of the heat transport caused by the horizontal Sverdrup circulation to the integral meridional heat transport is maximum in the vicinity of 30° N. On the average, it is equal to ∼ 40%. In the Subtropical Atlantic, the meridional heat transport varies with a period of ∼ 50–70 yr. The minimum value of the integral meridional heat transport was attained in the mid-1960s and its maximum value was at attained at the beginning of the 1990s. The location of the center of Azores pressure maximum makes it possible to conclude that the intensification of the total meridional heat transport in the Subtropical Atlantic on these time scales is accompanied by the displacement of the center of the North Subtropical anticyclonic gyre in the southwest direction.


Wind Stress Heat Transport Wind Field Ocean Heat Transport Meridional Heat Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. B. Polonsky, Role of the Ocean in the Variations of Climate [in Russian], Naukova Dumka, Kiev (2008).Google Scholar
  2. 2.
    A. B. Polonsky and S. B. Krasheninnikova, “Meridional heat transport in the North Atlantic and the trends of its variations,” Morsk. Gidrofiz. Zh., No. 1, 46–52 (2007).Google Scholar
  3. 3.
    H. L. Bryden, H. R. Longworth, and S. A. Cunningham, “Slowing of the Atlantic meridional overturning circulation at 25°N,” Nature, 438, 655–657 (2005).CrossRefGoogle Scholar
  4. 4.
    S. A. Josey, E. C. Kent, and P. K. Taylor, “Wind stress forcing of the ocean in the SOC climatology: Comparisons with the NCEP/NCAR, ECMWF, UWM/COADS, and Hellerman and Rosenstein datasets,” J. Phys. Oceanogr., 32, No. 7, 1993–2019 (2002).CrossRefGoogle Scholar
  5. 5.
    D. E. Harrison, “On climatological monthly mean wind stress and wind stress curl fields over the World Ocean,” J. Climate, 2, No. 1, 57–70 (1989).CrossRefGoogle Scholar
  6. 6.
    A. B. Polonsky and E. N. Voskresenskaya, “Low-frequency variability of the meridional drift heat transport in the North Atlantic,” Meteor. Gidrolog., No. 7, 89–100 (1996).Google Scholar
  7. 7.
    L. S. Gandin, D. L. Laitman, L. T. Matveev, and M. I. Yudin, Foundations of Dynamic Meteorology [in Russian], Gidrometeoizdat, Leningrad (1995).Google Scholar
  8. 8.
    G. F. Dzhiganshin, A. B. Polonsky, and S. B. Krasheninnikova, “Influence of the interannual variability of the wind field in the subtropical gyre on the Gulf-Stream discharge,” in: Systems of Monitoring of the Environment [in Russian], Marine Hydrophysical Institute, Ukrainian Academy of Sciences, Sevastopol (2006), pp. 296–299.Google Scholar
  9. 9.
    S. A. Baev, N. P. Bulgakov, and A. B. Polonsky, “Seasonal and interannual variability of the drift mass and heat transport in the North Atlantic (low latitudes),” Morsk. Gidrofiz. Zh., No. 6, 29–35 (1988).Google Scholar
  10. 10.
    S. K. Gulev, S. S. Lappo, and V. A. Tikhonov, “Interannual dynamics of the integral characteristics of thermal interaction of the North Atlantic with the atmosphere,” Izv. Akad. Nauk SSSR. Ser. FAO, 24, No. 8, 861–872 (1988).Google Scholar
  11. 11.
    D. Adamec, M. M. Rienecker, and J. M. Vukovich, “The time-varying characteristics of the meridional Ekman heat transport for the World Ocean,” J. Phys. Oceanogr., 23, No. 12, 2704–2716 (1993).CrossRefGoogle Scholar
  12. 12.
    C. W. Boning, R. Doscher, and H.-J. Isemer, “Monthly mean wind stress and Sverdrup transports in the North Atlantic: A comparison of Hellerman–Rosenstein and Isemer–Hasse climatologies,” J. Phys. Oceanogr., 21, No. 2, 221–235 (1991).CrossRefGoogle Scholar
  13. 13.
    A.F. Bunker, “Computation of surface energy flux and annual air–sea interaction cycles of the North Atlantic Ocean,” Month. Wea. Rev., 104, No. 9, 1122–1140 (1976).CrossRefGoogle Scholar
  14. 14.
    T. K. Chereskin and D. Roemmich, “A comparison of measured and wind-derived Ekman transport at 11° N in the Atlantic Ocean,” J. Phys. Oceanogr., 21, No. 6, 869–878 (1991).CrossRefGoogle Scholar
  15. 15.
    E. R. Fillenbaum, T. N. Lee, W. E. Johns, and R. J. Zantopp, “Meridional heat transport variability at 26.5°N in the North Atlantic,” J. Phys. Oceanogr., 27, No. 1, 153–174 (1997).CrossRefGoogle Scholar
  16. 16.
    M. M. Hall and H. L. Bryden, “Direct estimates and mechanisms of ocean heat transport,” Deep-Sea Res., 29, No. 3A, 339–359 (1982).CrossRefGoogle Scholar
  17. 17.
    S. Hellerman, “An updated estimate of the wind stress on the World Ocean,” Month. Wea. Rev., 95, No. 9, 607–626 (1967).CrossRefGoogle Scholar
  18. 18.
    S. Hellerman and M. Rosenstein, “Normal monthly wind stress over the World Ocean with error estimates,” J. Phys. Oceanogr., 13, No. 4, 1093–1104 (1983).CrossRefGoogle Scholar
  19. 19.
    E. B. Kraus and S. Levitus, “Annual heat flux variations across the tropic circles,” J. Phys. Oceanogr., 16, No. 8, 1479–1487 (1986).CrossRefGoogle Scholar
  20. 20.
    A. Leetmaa and A. F. Bunker, “Updated charts of the mean annual wind stress convergences in the Ekman layers and Sverdrup transport in the North Atlantic,” J. Mar. Res., 36, No. 3, 311–322 (1978).Google Scholar
  21. 21.
    S. Levitus, “Meridional Ekman heat fluxes for the World Ocean and individual ocean basins,” J. Phys. Oceanogr., 17, No. 9, 1484–1492 (1987).CrossRefGoogle Scholar
  22. 22.
    A. M. Macdonald and C. Wunsch, “An estimate of global ocean circulation and heat fluxes,” Nature, 382, 436–439 (1996).CrossRefGoogle Scholar
  23. 23.
    R. L. Molinari, E. Johns, and J. F. Festa, “The annual cycle of meridional heat flux in the Atlantic Ocean at 26.5°N,” J. Phys. Oceanogr., 20, No. 3, 476–482 (1990).CrossRefGoogle Scholar
  24. 24.
    T. A. Rago and T. H. Rossby, “Heat transport into the North Atlantic Ocean of 32°N latitude,” J. Phys. Oceanogr., 17, No. 7, 854–871 (1987).CrossRefGoogle Scholar
  25. 25.
    D. Roemmich, “The balance of geostrophic and Ekman transports in the tropical Atlantic Ocean,” J. Phys. Oceanogr., 13, No. 8, 1534–1539 (1983).CrossRefGoogle Scholar
  26. 26.
    D. Roemmich and C. Wunsch, “Two transatlantic sections: meridional circulation and heat flux in the subtropical North Atlantic Ocean,” Deep-Sea Res., 32, No. 6, 619–664 (1985).CrossRefGoogle Scholar
  27. 27.
    O. T. Sato and P. S. Polito, “Comparison of the global meridional Ekman heat flux estimated from four wind sources,” J. Phys. Oceanogr., 35, No. 1, 94–108 (2005).CrossRefGoogle Scholar
  28. 28.
    O. T. Sato and T. H. Rossby, “Seasonal and low-frequency variability of the meridional heat flux at 36° N in the North Atlantic,” J. Phys. Oceanogr., 30, No. 3, 606–621 (2000).CrossRefGoogle Scholar
  29. 29.
    L. D. Talley, “Shallow, intermediate, and deep overturning components of the global heat budget,” J. Phys. Oceanogr., 33, No. 3, 530–560 (2003).CrossRefGoogle Scholar
  30. 30.
    K. E. Trenberth and J. M. Caron, “Estimates of meridional atmosphere and ocean heat transports,” J. Clim., 14, No. 16, 3433–3443 (2001).CrossRefGoogle Scholar
  31. 31.
    K. E. Trenberth, W. G. Large and J. G. Olson, “The mean annual cycle in global ocean wind stress,” J. Phys. Oceanogr., 20, No. 11, 1742–1760 (1990).CrossRefGoogle Scholar
  32. 32.
    T. L. Townsend, H. E. Hurlburt, and P. J. Hogan, “Modeled Sverdrup flow in the North Atlantic from 11 different wind stress climatologies,” Dyn. Atmosph. Ocean., 32, Nos. 3–4, 373–417 (2000).CrossRefGoogle Scholar
  33. 33.
    M. I. Budyko, Atlas of the Heat Balance of Earth, Glob. Geofiz. Observ., Moscow (1963).Google Scholar
  34. 34.
    T. H. V. Haar and A. H. Oort, “New estimate of annual poleward energy transport by Northern hemisphere oceans,” J. Phys. Oceanogr., 3, No. 2, 169–172 (1973).CrossRefGoogle Scholar
  35. 35.
    P. T. Lamb and A. F. Bunker, “The annual march of heat budget of the North and tropical Atlantic Ocean,” J. Phys. Oceanogr., 12, No. 12, 1388–1410 (1982).CrossRefGoogle Scholar
  36. 36.
    A. H. Oort and T. H. V. Haar, “On the observed annual cycle in the ocean–atmosphere heat balance over the Northern hemisphere,” J. Phys. Oceanogr., 6, No. 6, 781–800 (1976).CrossRefGoogle Scholar
  37. 37.
    N. A. Timofeev and A. V. Yurovskii, Radiation, Heat, and Water Balance Modes of the Oceans. Climate and Variability [in Russian], ÉKOSI-Gidrofizika, Sevastopol (2004).Google Scholar
  38. 38.
    S. Hastenrath, “Heat budget of ocean,” J. Phys. Oceanogr., 10, No. 2, 159–170 (1980).CrossRefGoogle Scholar
  39. 39.
    S. Hastenrath, “On meridional heat transport in the World Ocean,” J. Phys. Oceanogr., 12, No. 8, 922–927 (1982).CrossRefGoogle Scholar
  40. 40.
    J. Hsuing, “Estimates of global oceanic meridional heat transport,” J. Phys. Oceanogr., 15, No. 11, 1405–1413 (1985).CrossRefGoogle Scholar
  41. 41.
    A. A. Dunets, V. I. Klimok, and A. B. Polonsky, “Mass balance and heat transport in the Equatorial Atlantic,” Morsk. Gidrofiz. Zh., No. 1, 22–29 (1991).Google Scholar
  42. 42.
    W. Krauss, “The North Atlantic Current,” J. Geophys. Res., 91, No. C4, 5061–5074 (1986).CrossRefGoogle Scholar
  43. 43.
    A. Köhl and D. Stammer, “Variability of the meridional overturning in the North Atlantic from the 50-year GECCO state estimation,” J. Phys. Oceanogr., 38, No. 9, 1913–1930 (2008).CrossRefGoogle Scholar
  44. 44.
    A. S. Sarkisyan, “Four decades since the discovery of the role played by the joint effect of baroclinicity and bottom topography in modeling the climatic characteristics of the ocean,” Izv. Akad. Nauk SSSR. Ser. FAO, 42, No. 5, 582–603 (2006).Google Scholar
  45. 45.
    A. B. Polonsky, “Is the process of warming of intermediate waters of the subtropical gyre in the North Atlantic indeed observed?” Morsk. Gidrofiz. Zh., No. 6, 76–81 (2000).Google Scholar
  46. 46.
    A. B. Polonsky and S. B. Krasheninnikova, “Low-frequency variations of the drift and integral meridional heat transports in the North Atlantic,” Meteor., Klimat. Gidrol., Issue 50, Pt. 2, 196–201 (2008).Google Scholar
  47. 47.
    A. A. Sizov, “On the large-scale variability of the circulation and thermal state of the atmosphere and the ocean in the North Atlantic,” Morsk. Gidrofiz. Zh., No. 5, 22–26 (1991).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  1. 1.Marine Hydrophysical Institute, Ukrainian National Academy of SciencesSevastopolUkraine

Personalised recommendations