Optical four-channel demultiplexer based on air-bridge structure and graphite-type ring resonators


A novel an optical four-channel demultiplexer based on a hexagonal lattice shape of embedded air holes in dielectric substrate (air-bridge type) is proposed. Demultiplexing for each channel is obtained by designing the graphite-type ring resonator which consists of small air hole defects in own unit cells. The physical parameters which govern the demultiplexer performance are investigated. It is observed that employing big air hole as a defect in the end of input waveguide enhanced the coupling efficiency between the rings and waveguides. By engineering the refractive index of substrate and size of air holes, the proposed demultiplexer is tuned. The demultiplexer has an average quality factor > 3000 and channel spacing \(\Delta \lambda \le 2\;{\text{nm}}\). We showed that big air hole defect in the end of input waveguide is an effective scheme for improving the transmission efficiency and cross talk between channels. The average transmission efficiency and cross talk value are above 98% and − 23 dB, respectively. The total size of proposed structure and its maximum delay time are 289 μm2 and 0.3 ps, respectively. Our demultiplexer has an easy fabrication structure, and it can find key applications for many cores CPU in an on-chip optical network and the dense wavelength demultiplexing in optical integrated circuits.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic crystals: molding the flow of light, 2nd edn. PrincetonUniversity Press, Princeton (2008)

    Google Scholar 

  2. 2.

    Sinha, R.K., Rawal, S.: Modeling and design of 2D photonic crystal based Y type dual band wavelength demultiplexer. Opt. Quantum Electron. 40, 603–613 (2008)

    Article  Google Scholar 

  3. 3.

    Shinya, A., Notomi, M., Yokohama, I., Takahashi, C., Takahashi, J.: Two-dimensional Si photonic crystals on oxide using SOI substrate. Opt. Quantum Electron. 34, 113 (2002)

    Article  Google Scholar 

  4. 4.

    Rawal, S., Sinha, R.K.: Design, analysis and optimizationof silicon-on-insulator photonic crystal dual band wavelengthdemultiplexer. Opt. Commun. 686, 3889–3894 (2009) demultiplexer. Opt. Commun. 686, 3889–3894 (2009)

  5. 5.

    Naghizade, S., Sattari-Esfahlan, S.M.: High-performance ultracompact communication triplexer on silicon-on-insulator photonic crystal structure. Photon Netw. Commun. 34, 445–450 (2017)

    Article  Google Scholar 

  6. 6.

    Koshiba, M.: Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers. J. LightwaveTechnol. 19, 1970–1975 (2001)

    Article  Google Scholar 

  7. 7.

    Niemi, T., Frandsen, L.H., Hede, K.K., Harpoth, A., Bore, P.I., Kristensen, M.: Wavelength-division demultiplexing using photonic crystal waveguides. IEEE Photon. Technol. Lett. 18, 226–228 (2006)

    Article  Google Scholar 

  8. 8.

    Momeni, B., Huang, J., Soltani, M., Askari, M., Mohammadi, S., Rakhshandehroo, M., et al.: Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms. Opt. Express 14, 2413 (2006)

    Article  Google Scholar 

  9. 9.

    Bernier, D., Le Roux, X., Lupu, A., Marris-Morini, D., Vivien, L., Cassan, E.: Compact, low cross-talk CWDM demultiplexer using photonic crystal superprism. Opt. Express 16, 17209 (2008)

    Article  Google Scholar 

  10. 10.

    Khorshid Ahmad, A., Kirk, A.G.: Composite superprism photonic crystal demultiplexer: analysis and design. Opt. Express 18, 20518–20528 (2010)

    Article  Google Scholar 

  11. 11.

    Bazargani, H.P.: Proposal for a 4-channel all optical demultiplexer using 12-fold photonic quasicrystal. Opt. Commun. 285, 1848–1853 (2012)

    Article  Google Scholar 

  12. 12.

    Manzacca, G., Paciotti, D., Marchese, A., Moreolo, M.S., Cincotti, G.: 2D photonic crystal cavity-based WDM multiplexer. Photonics Nanostruct. Fundam. Appl. 5, 164–170 (2007)

    Article  Google Scholar 

  13. 13.

    Kanamori, Y., Takahashi, K., Hane, K.: An ultra-small wavelength selective channel drop switch using a nanomechanical photonic crystal nanocavity. Appl. Phys. Lett. 95, 171911 (2009)

    Article  Google Scholar 

  14. 14.

    Robinson, S., Nakkeeran, R.: Photonic crystal ring resonator based add drop filters: a review. Opt. Eng. 52(6), 060901 (2013)

    Article  Google Scholar 

  15. 15.

    Alipour-Banaei, H., Mehdizadeh, F., HassangholizadehKashtiban, M.: A new proposal for PCRR-based channel drop filter using elliptical rings. Phys. E 56, 211–215 (2014)

    Article  Google Scholar 

  16. 16.

    Naghizade, S., Sattari-Esfahlan, S.M.: Loss-less elliptical channel drop filter for WDM applications. J. Opt. Commun. (2017). https://doi.org/10.1515/joc-2017-0088

    Article  Google Scholar 

  17. 17.

    Rostami, A., Alipour-Banaei, H., Nazari, F., Bahrami, A.: An ultracompact photonic crystal wavelength division demultiplexerusing resonance cavities in a modified Y-branch structure. Optik. Int. J. Light Electron Opt. 122, 1481–1485 (2011)

    Article  Google Scholar 

  18. 18.

    Rostami, A., Habibiyan, H., Nazari, F., Bahrami, A., Alipour-Banaei, H.: A novel proposal for DWDM demultiplexer design using resonance cavity in photonic crystal structure. In: Communications and Photonics Conference and Exhibition (ACP). Asia IEEE (2009)

  19. 19.

    Rostami, A., Nazari, F., Alipour-Banaei, H., Bahrami, A.: A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photonics Nanostruct. Fundam. Appl. 8, 14–22 (2010)

    Article  Google Scholar 

  20. 20.

    Mehdizadeh, F., Soroosh, M.: A new proposal for eight channel optical demultiplexer based on photonic crystal resonant cavities. Photon Netw. Commun. 31, 65–70 (2016)

    Article  Google Scholar 

  21. 21.

    Naghizade, S., Sattari-Esfahlan, S.M.: Excellent quality factor ultra-compact optical communication filter on ring-shaped cavity. J. Opt. Commun. (2017). https://doi.org/10.1515/joc-2017-0035

    Article  Google Scholar 

  22. 22.

    Mansouri-Birjandi, M.A., Rakhshani, M.R.: A new design of tunable four-port wavelength demultiplexer by photonic crystal ring resonators. Optik. Int. J. Light Electron Opt. 124, 5923–5926 (2013)

    Article  Google Scholar 

  23. 23.

    Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: A novel 4-channel demultiplexer based on photonic crystal ring resonators. Optik. Int. J. Light Electron Opt. 124(23), 5964–5967 (2013)

    Article  Google Scholar 

  24. 24.

    Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: Optical wavelength demultiplexer based on photonic crystal ring resonators. Photon Netw. Commun. 29(2), 146–150 (2015)

    MATH  Article  Google Scholar 

  25. 25.

    Naghizade, S., Sattari-Esfahlan, S.M.: Tunable high performance 16-channel demultiplexer on 2D photonic crystal ring resonator operating at telecom wavelengths. J. Opt. Commun. (2017). https://doi.org/10.1515/joc-2017-0199

    Article  Google Scholar 

  26. 26.

    Serajmohammadi, S., Alipour-Banaei, H., Mehdizadeh, F.: All optical decoder switch based on photonic crystal ring resonators. Opt. Quant. Electron. 47, 1109–1115 (2015)

    MATH  Article  Google Scholar 

  27. 27.

    Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: A novel proposal for optical decoder switch based on photonic crystal ring resonators. Opt. Quant. Electron. 48, 20–28 (2015)

    Article  Google Scholar 

  28. 28.

    Kataz, O., Malka, D.: Design of novel SOI 1 × 4 optical power splitter using seven horizontally slotted waveguides. Photon. Nanostruct. Fundam. Appl. 25, 9–13 (2017)

    Article  Google Scholar 

  29. 29.

    Malka, D., Peled, A.: Power splitting of 1 × 16 in multicore photonic crystal fibers. Appl. Surf. Sci. 417, 34–39 (2017)

    Article  Google Scholar 

  30. 30.

    Naghizade, S., Mohammadi, S.: Design and engineering of dispersion and loss in photonic crystal fiber 1 × 4 power splitter (PCFPS) based on hole size alteration and optofuidic infiltration. Opt. Quant. Electron. 51, 17–31 (2018)

    Article  Google Scholar 

  31. 31.

    Miao, B., Chen, C., Sharkway, A., Shi, S., Prather, D.W.: Two bit optical analog-to-digital converter based on photonic crystals. Opt. Exp. 14, 7966–7973 (2006)

    Article  Google Scholar 

  32. 32.

    Fasihi, K.: All-optical analog-to-digital converters based on cascaded 3-dB power splitters in 2D photonic crystals. Optik Int. J. Light Electron Opt. 125, 6520–6523 (2014)

    Article  Google Scholar 

  33. 33.

    Tavousi, A., Mansouri-Birjandi, M.A., Saffari, M.: Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators. Phys. E Low-Dimens. Syst. Nanostruct. 83, 101–106 (2016)

    Article  Google Scholar 

  34. 34.

    Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: A novel proposal for all optical analog-to-digital converter based on photonic crystal structures. IEEE Photonics J. 9, 4700311 (2017)

    Article  Google Scholar 

  35. 35.

    Serajmohammadi, S., Alipour-Banaei, H., Mehdizadeh, F.: All optical decoder switch based on photonic crystal ring resonators. Opt. Quant. Electron. 47(5), 1109–1115 (2015)

    MATH  Article  Google Scholar 

  36. 36.

    Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: Proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectron. 11, 29 (2017)

    Article  Google Scholar 

  37. 37.

    Naghizade, S., Khoshsima, H.: Low input power an all optical 4 × 2 encoder based on triangular lattice shape photonic crystal. J. Opt. Commun (2018). https://doi.org/10.1515/joc-2018-0019

    Article  Google Scholar 

  38. 38.

    Naghizade, S., Mohammadi, S., Khoshsima, H.: Design and simulation of an all optical 8 to 3 binary encoder based on optimized photonic crystal OR gates l. J. Opt. Commun. (2018). https://doi.org/10.1515/joc-2018-0034

    Article  Google Scholar 

  39. 39.

    Ghadrdan, M., Mansouri-Birjandi, M.A.: Concurrent implementation of all-optical half-adder and AND & XOR logic gates based on nonlinear photonic crystal. Opt. Quantum Electron. 45, 1027 (2013)

    Article  Google Scholar 

  40. 40.

    Karkhanehchi, M.M., Parandin, F., Zahedi, A.: Design of an all optical half-adder based on 2D photonic crystals. PhotonicNetw Commun. 33, 159–165 (2017)

    Google Scholar 

  41. 41.

    Cheraghi, F., Soroosh, M., Akbarizadeh, G.: An ultra-compact all optical full adder based on nonlinear photonic crystal resonant cavities. Superlattices Microstruct. 113, 359–365 (2018)

    Article  Google Scholar 

  42. 42.

    Rakhshani, M.R., Mansouri-Birjandi, M.A.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Phys. E Low Dimens. Syst. Nanostruct. 50, 97 (2013)

    Article  Google Scholar 

  43. 43.

    Mehdizadeh, F., Soroosh, M.: A novel proposal for all optical demultiplexers based on photonic crystal. Optoelectron. Adv. Mater. Commun. 9, 324 (2015)

    Google Scholar 

  44. 44.

    Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: An optical demultiplexer based on photonic crystal ring resonators. Int. J. Light Electron Opt. 127, 8706 (2016)

    Article  Google Scholar 

  45. 45.

    Naghizade, S., Sattari-Esfahlan, S.M.: An optical five channel demultiplexer-based simple photonic crystal ring resonator for WDM applications. J Opt Commun. 15, 50 (2018)

    Google Scholar 

  46. 46.

    Vogelaar, L.: Large area photonic crystal slabs for visible light with waveguiding defect structures: fabrication with focused ion beam assisted laser interference lithography. Adv. Mat. 13, 1551 (2001)

    Article  Google Scholar 

  47. 47.

    Li, L., Liu, G.Q., Chen, Y.H., Tang, F.L., Huang, K., Gong, L.X.: Photonic crystal multi-channel drop filters with Fabry-Pérot microcavity reflection feedback. Optik. Int. J. Light Electron Opt. 124, 2608–2611 (2013)

    Article  Google Scholar 

  48. 48.

    Johnson, S.G., Joannopoulos, J.D.: Block-iterative frequency domain methods for Maxwell’s equations in a plane wave basis. Opt. Express 8, 173–190 (2001)

    Article  Google Scholar 

  49. 49.

    Taflove, A., Hangess, S.C.: Computational Electrodynamics. The Finite—Difference Time—Domain Method, 3rd edn. Artech House, Norwood (2005)

    Google Scholar 

  50. 50.

    Gedney, S.D.: Introduction to finite-difference time-domain (FDTD) method for electromagnetics. Morgan & Claypool, Lexington (2010)

    Google Scholar 

  51. 51.

    Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1999)

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Saleh Naghizade.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naghizade, S., Mohammadi, S. Optical four-channel demultiplexer based on air-bridge structure and graphite-type ring resonators. Photon Netw Commun (2020). https://doi.org/10.1007/s11107-020-00889-6

Download citation


  • Air-bridge
  • Ring resonator
  • Channel spacing
  • Cross talk
  • Optical integrated circuits