Skip to main content
Log in

A tunable Mach–Zehnder interferometer based on dual micro-cavity photonic crystal fiber for load measurement

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Optical fiber technologies are widely engaged in variety of industries, machines and production lines due to their precise results and low cost. Optical sensors are fabricated using different types of optical fibers. In this paper, a new fabrication approach of, in-fiber, tunable Mach–Zehnder interferometer with dual micro-cavities using a photonic crystal fiber (PCF) has been proposed for load measurement application. A large mode area (LMA-10) PCF is used to splice between two equal lengths of single-mode fibers using fusion splicing technique. Different parameters such as arc power, length of the PCF and the overlap gap between samples have been considered to control the fabrication process. Ellipsoidal shape micro-cavities were experimentally achieved parallel to the propagation axis having dimensions of (24.92–62.32) µm of width and (3.82–18.2) µm of length. Results showed that higher sensitivity values of 0.15 nm/N and 0.32 nm/N were achieved with elliptical width of 18.2 µm. The simplicity of sensor fabrication process, controlled parameters of cavity creation, small and compact size and high sensitivity of large mode area that the PCFs exhibit, add more advantage for load measurement applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Rong, Q., Sun, H., Qiao, X., Zhang, J., Hu, M., Feng, Z.: A miniature fiber-optic temperature sensor based on a Fabry–Perot interferometer. J. Opt. 14(4), 045002 (2012)

    Article  Google Scholar 

  2. Zhou, A., Qin, B., Zhu, Z., Zhang, Y., Liu, Z., Yang, J., Yuan, L.: Hybrid structure fiber optic Fabry–Perot interferometer for simultaneous measurement of strain and temperature. Opt. Lett. 39(18), 5267–5270 (2014)

    Article  Google Scholar 

  3. Ferreira, M.S., Bierlich, J., Kobelke, J., Schuster, K., Santos, J.L., Frazão, O.: Towards the control of highly sensitive Fabry–Perot strain sensor based on hollow-core ring photonic crystal Fiber. Opt. Express 20(20), 21946–21952 (2012)

    Article  Google Scholar 

  4. Tan, X., Li, X., Geng, Y., Yin, Z., Wang, L., Wang, W., Deng, Y.: Polymer microbubble-based Fabry–Perot fiber interferometer and sensing applications. IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015)

    Article  Google Scholar 

  5. Liao, C.R., Hu, T.Y., Wang, D.N.: Optical fiber Fabry–Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing. Opt. Express 20(20), 22813–22818 (2012)

    Article  Google Scholar 

  6. Dash, J.N., Jha, R.: Fabry–Perot cavity on demand for hysteresis free interferometric sensors. IEEE J. Lightwave Technol. 34, 3188–3193 (2016)

    Article  Google Scholar 

  7. Dong, X., Du, H., Sun, X., Luo, Z., Duan, J.: A novel strain sensor with large measurement range based on all fiber Mach–Zehnder interferometer. Sens. J. (Basel) 18(5), 1549 (2018)

    Article  Google Scholar 

  8. Dong, X., Du, H., Luo, Z., Duan, J.: Highly sensitive strain sensor based on a novel Mach–Zehnder interferometer with TCF–PCF structure. Sens. (Basel) 18(1), 278 (2018)

    Article  Google Scholar 

  9. Zheng, J., Yan, P., Yu, Y., Ou, Z., Wang, J., Chen, X., Du, C.: Temperature and index insensitive strain sensor based on a photonic crystal fiber in line Mach–Zehnder interferometer. J. Opt. Commun. 297, 7–11 (2013)

    Article  Google Scholar 

  10. Liu, S., Yang, K., Wang, Y., Qu, J., Liao, C., He, J., Li, Z., Yin, G., Sun, B., Zhou, J.: High-sensitivity strain sensor based on in-fiber rectangular air bubble. Sci. Rep. 5, 7624 (2015)

    Article  Google Scholar 

  11. Hou, M., Wang, Y., Liu, S., Li, Z., Lu, P.: Multi-components interferometer based on partially filled dual-core photonic crystal fiber for temperature and strain sensing. IEEE Sens. J. 16, 6192–6196 (2016)

    Article  Google Scholar 

  12. Hu, L.M., Chan, C.C., Dong, X.Y., Wang, Y.P., Zu, P., Wong, W.C., Qian, W.W., Li, T.: Photonic crystal fiber strains sensor based on modified Mach-Zehnder interferometer. IEEE Photonics J. 4, 114–118 (2012)

    Article  Google Scholar 

  13. Domingues, M.F., Rodriguez, C.A., Martin, J., Tavares, C., Marques, C., Alberto, N., André, P., Antunes, P.: Cost-effective optical fiber pressure sensor based on intrinsic Fabry–Perot interferometric micro-cavities. Opt. Fiber Technol. J. 42, 56–62 (2018)

    Article  Google Scholar 

  14. Wang, Y., Wang, S., Jiang, L., Huang, H., Zhang, L., Wang, P., Lv, L., Cao, Z.: Temperature-insensitive refractive index sensor based on Mach–Zehnder interferometer with two microcavities. Opt. Lett. 15(2), 020603 (2017)

    Article  Google Scholar 

  15. Vazquez, D., Ayala, J.M., Laguna, R.R., Rodriguez, E., Hernandez, J.M., Garcia, J.C., Chavez, R.I.: An all fiber intrinsic Fabry–Perot interferometer based on an air-microcavity. Sensors 13, 6355–6364 (2013)

    Article  Google Scholar 

  16. Vazquez, D., Dieguez, Y., Hernandez, J.M., Maciel, M., Rodriguez, E., Laguna, R., Ayala, J.M.: Modified all-fiber Fabry–Perot interferometer and its refractive index, load, and temperature analyses. IEEE Photonics J. 7(3), 1–9 (2015)

    Article  Google Scholar 

  17. Fujikura. Technical Datasheet: Fujikura (FSM-60S) Specialty Arc Fusion Splicer Manual. Technical report, Fujikura Corporation (2012)

  18. Favero, F.C., Bouwmans, G., Finazzi, V., Villatoro, J., Pruneri, V.: Fabry Perot interferometers built by photonic crystal fiber pressurization during fusion splicing. Opt. Lett. 36, 4191–4193 (2011)

    Article  Google Scholar 

  19. Adnan, S.A., Abdulwahhab, A.W., Ismail, S.N.: Fusion splicing: the penalty of increasing the collapse length of the air holes in ESM-12B photonic crystal fibers. Opt. Appl. 46(2), 265–275 (2016)

    Google Scholar 

  20. Xiaopei, C., Fabin, S., Zhuang, W., Zhenyu, H., Wang, A.: Micro-air-gap based intrinsic Fabry–Perot interferometric fiber-optic sensor. Appl. Opt. 45, 7760–7766 (2006)

    Article  Google Scholar 

  21. Manders, M., Partridge, M., Correia, R.N., James, S.W., Tatam, R.P.: Transverse strain response of in-fiber Fabry–Perot microcavities. Proc. SPIE 9157, 91571O (2014)

    Article  Google Scholar 

  22. Zhang, L., Sun, S., Li, M., Zhu, N.: All-optical temporal fractional order differentiator using an in-fiber ellipsoidal air-microcavity. J. Semicond. 38(12), 126001 (2017)

    Article  Google Scholar 

  23. Favero, F.C., Araujo, L., Bouwmans, G., Finazzi, V., Villatoro, J., Pruneri, V.: Spheroidal Fabry–Perot microcavities in optical fibers for high-sensitivity sensing. Opt. Express 20(7), 7112 (2012)

    Article  Google Scholar 

  24. Manders, M.: Interferometric fiber optic sensors incorporating photonic crystal fiber for measurement of strain and load. Cranfield University, M.Sc thesis (2016)

  25. Favero, F.C., Araujo, L., Bouwmans, G., Finazzi, V., Villatoro, J., Pruneri, V.: Spheroidal Fabry–Perot microcavities in optical fibers for high-sensitivity sensing. Opt. Express 20(7), 7112 (2012)

    Article  Google Scholar 

  26. Dash, J.N., Jha, R.: Fabrication of inline micro air cavity with choice based dimensions. IEEE Photonic Technol. Lett. 1135(c), 28–31 (2017)

    Google Scholar 

Download references

Funding

Funding was provided by University of Baghdad (Grant No. 666).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faraqid Q. Mohammed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, F.Q., Mansoor, T.S. & Abdulwahhab, A.W. A tunable Mach–Zehnder interferometer based on dual micro-cavity photonic crystal fiber for load measurement. Photon Netw Commun 38, 270–279 (2019). https://doi.org/10.1007/s11107-019-00855-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-019-00855-x

Keywords

Navigation