Skip to main content
Log in

Application of self-collimated beams in realizing all-optical photonic crystal-based half-adder

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In this paper an all-optical half-adder was proposed by using self-collimation effect in two-dimensional photonic crystals. Self-collimation effect was obtained in XM direction for wavelength 1500 nm by using square lattice rod-type photonic crystal structure. Plane wave expansion and finite-difference time-domain methods were used to obtain the band structure diagram and simulate the optical behavior of the proposed structure, respectively. The maximum delay time and required input intensity are 1 ps and 54 mW/μm2, respectively. The normalized power-level margins for logics 0 and 1 were obtained to be about 20 and 70%, respectively. The total footprint of the structure is about 75 μm2, which is suitable for all optical integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)

    Article  Google Scholar 

  2. John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)

    Article  Google Scholar 

  3. Mehdizadeh, F., Alipour-Banaei, H.: Bandgap management in two-dimensional photonic crystal thue-morse structures. J. Opt. Commun. 34, 61–65 (2013)

    Article  Google Scholar 

  4. Alipour-Banaei, H., Mehdizadeh, F.: Bandgap calculation of 2D hexagonal photonic crystal structures based on regression analysis. J. Opt. Commun. 34, 1–9 (2013)

    Article  Google Scholar 

  5. Wu, Z., Xie, K., Yang, H.: Band gap properties of two-dimensional photonic crystals with rhombic lattice. Opt. Int. J. Light Electron. Opt. 123, 534–536 (2012)

    Article  Google Scholar 

  6. Pu, S., Dong, S., Huang, J.: Tunable slow light based on magnetic-fluid-infiltrated photonic crystal waveguides. J. Opt. 16, 045102 (2014)

    Article  Google Scholar 

  7. Soljačić, M., Johnson, S.G., Fan, S., Ibanescu, M., Ippen, E., Joannopoulos, J.D.: Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. J. Opt. Soc. Am. B. 19, 2052 (2002)

    Article  Google Scholar 

  8. Vlasov, Y.A., O’Boyle, M., Hamann, H.F., McNab, S.J.: Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005)

    Article  Google Scholar 

  9. Noori, M., Soroosh, M., Baghban, H.: Highly efficient self-collimation based waveguide for Mid-IR applications. Photonics Nanostructures Fundam. Appl. 19, 1–11 (2016)

    Article  Google Scholar 

  10. Noori, M., Soroosh, M., Baghban, H.: All-angle self-collimation in two-dimensional square array photonic crystals based on index contrast tailoring. Opt. Eng. 54, 037111 (2015)

    Article  Google Scholar 

  11. Witzens, J., Loncar, M., Scherer, A.: Self-collimation in planar photonic crystals. IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002)

    Article  Google Scholar 

  12. Kosaka, H., Kawashima, T., Tomita, A., Notomi, M., Tamamura, T., Sato, T., Kawakami, S.: Self-collimating phenomena in photonic crystals. Appl. Phys. Lett. 74, 1212 (1999)

    Article  Google Scholar 

  13. Rani, P., Kalra, Y., Sinha, R.K.: Realization of and gate in y shaped photonic crystal waveguide. Opt. Commun. 298–299, 227–231 (2013)

    Article  Google Scholar 

  14. Mansouri-Birjandi, M.A., Tavousi, A., Ghadrdan, M.: Full-optical tunable add/drop filter based on nonlinear photonic crystal ring resonators. Photonics Nanostructures Fundam. Appl. 21, 44–51 (2016)

    Article  Google Scholar 

  15. Tavousi, A., Mansouri-Birjandi, M.A., Ghadrdan, M., Ranjbar-Torkamani, M.: Application of photonic crystal ring resonator nonlinear response for full-optical tunable add–drop filtering. Photonic Netw. Commun. 34, 131–139 (2017)

    Article  Google Scholar 

  16. Musavizadeh, S.M., Soroosh, M., Mehdizadeh, F.: Optical filter based on photonic crystal. Indian J. Pure Appl. Phys. 53, 736–739 (2015)

    Google Scholar 

  17. Qiang, Z., Zhou, W., Soref, R.: Optical add-drop filters based on photonic crystal ring resonators. Opt. Express 15, 1823–1831 (2007)

    Article  Google Scholar 

  18. Ying, C., Jing, D., Jia, S., Qiguang, Z., Weihong, B.: Study on tunable filtering performance of compound defect photonic crystal with magnetic control. Opt. Int. J. Light Electron Opt. 126, 5353–5356 (2015)

    Article  Google Scholar 

  19. Dideban, A., Habibiyan, H., Ghafoorifard, H.: Photonic crystal channel drop filter based on ring-shaped defects for DWDM systems. Phys. E Low-dimensional Syst. Nanostructures 87, 77–83 (2017)

    Article  Google Scholar 

  20. Mehdizadeh, F., Soroosh, M.: A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities. Photonic Netw. Commun. 31, 65–70 (2016)

    Article  Google Scholar 

  21. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: An optical demultiplexer based on photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 127, 8706–8709 (2016)

    Article  Google Scholar 

  22. Talebzadeh, R., Soroosh, M., Mehdizadeh, F.: Improved low channel spacing high quality factor four-channel demultiplexer based on photonic crystal ring resonators. Opt. Appl. 46, 553–564 (2016)

    Google Scholar 

  23. Talebzadeh, R., Soroosh, M., Kavian, Y.S., Mehdizadeh, F.: Eight-channel all-optical demultiplexer based on photonic crystal resonant cavities. Opt. Int. J. Light Electron Opt. 140, 331–337 (2017)

    Article  Google Scholar 

  24. Naoum, R., Bouamami, S.: Temperature effect on the tenability of an eight-channel demultiplexer. Opt. Int. J. Light Electron Opt. 125, 5164–5166 (2014)

    Article  Google Scholar 

  25. Zavvari, M.: Design of photonic crystal-based demultiplexer with high-quality factor for DWDM applications. J. Opt. Commun. Published online (2017)

  26. Khorshidahmad, A., Kirk, A.G.: Composite superprism photonic crystal demultiplexer: analysis and design. Opt. Express 18, 20518–20528 (2010)

    Article  Google Scholar 

  27. Jiu-Sheng, L., Han, L., Le, Z.: Compact four-channel terahertz demultiplexer based on directional coupling photonic crystal. Opt. Commun. 350, 248–251 (2015)

    Article  Google Scholar 

  28. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H.: A novel proposal for optical decoder switch based on photonic crystal ring resonators. Opt. Quant. Electron. 48(1), 20 (2016)

    Article  Google Scholar 

  29. Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S., Hassangholizadeh-Kashtiban, M.: A 2 × 4 all optical decoder switch based on photonic crystal ring resonators. J. Mod. Opt. 62, 430–434 (2014)

    Article  MathSciNet  Google Scholar 

  30. Serajmohammadi, S., Alipour-Banaei, H., Mehdizadeh, F.: All optical decoder switch based on photonic crystal ring resonators. Opt. Quantum Electron. 47, 1109–1115 (2014)

    Article  Google Scholar 

  31. Ouahab, I., Naoum, R.: A novel all optical 4 × 2 encoder switch based on photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 127(19), 7835–7841 (2016)

    Article  Google Scholar 

  32. Teo, H.G., Liu, A.Q., Singh, J., Yu, M.B., Bourouina, T.: Design and simulation of MEMS optical switch using photonic bandgap crystal. Microsyst. Technol. 10, 400–406 (2004)

    Article  Google Scholar 

  33. Bai, J., Wang, J., Jiang, J., Chen, X., Li, H., Qiu, Y., Qiang, Z.: Photonic not and nor gates based on a single compact photonic crystal ring resonator. Appl. Opt. 48, 6923–6927 (2009)

    Article  Google Scholar 

  34. Bao, J., Xiao, J., Fan, L., Li, X., Hai, Y., Zhang, T., Yang, C., Moniem, T.A., Tang, C., Dou, X., Lin, Y., Yin, H., Wu, B., Zhao, Q., Fu, Y., Hu, X., Gong, Q., Jiang, Y.-C., Liu, S.-B., Zhang, H.-F., Kong, X.-K., Rani, P., Kalra, Y., Sinha, R.K.: Design of all-optical logic gates avoiding external phase shifters in a two-dimensional photonic crystal based on multi-mode interference for BPSK signals. Opt. Commun. 377, 148–155 (2014)

    Google Scholar 

  35. Saidani, N., Belhadj, W., AbdelMalek, F.: Novel all-optical logic gates based photonic crystal waveguide using self imaging phenomena. Opt. Quantum Electron. 47, 1829–1846 (2014)

    Article  Google Scholar 

  36. Shaik, E.H., Rangaswamy, N.: Improved design of all-optical photonic crystal logic gates using T-shaped waveguide. Opt. Quantum Electron. 48, 1–15 (2016)

    Article  Google Scholar 

  37. Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: All optical NAND gate based on nonlinear photonic crystal ring resonators. Opt. Int. J. Light Electron Opt. 130, 1214–1221 (2017)

    Article  Google Scholar 

  38. Andalib, P., Granpayeh, N.: All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators. J. Opt. Soc. Am. B 26, 10 (2008)

    Article  Google Scholar 

  39. Lee, K.-Y., Lin, J.-M., Yang, Y.-C., Yang, Y.-B., Wu, J.-S., Lin, Y.-J., Lee, W.-Y.: The designs of XOR logic gates based on photonic crystals. In: Proc. SPIE 2008, vol. 1

  40. Fasihi, K.: Design and simulation of linear logic gates in the two-dimensional square-lattice photonic crystals. Optik (Stuttg) 127, 4669–4674 (2016)

    Article  Google Scholar 

  41. Moniem, T.A.: All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators. J. Mod. Opt. 63, 735–741 (2016)

    Article  Google Scholar 

  42. Hassangholizadeh-Kashtiban, M., Sabbaghi-Nadooshan, R., Alipour-Banaei, H.: A novel all optical reversible 4 × 2 encoder based on photonic crystals. Opt. Int. J. Light Electron Opt. 126, 2368–2372 (2015)

    Article  Google Scholar 

  43. Moniem, T.A.: All-optical digital 4 × 2 encoder based on 2D photonic crystal ring resonators. J. Mod. Opt. 63(8), 735–741 (2016)

    Article  Google Scholar 

  44. Alipour-Banaei, H., Rabati, M.G., Abdollahzadeh-Badelbou, P., Mehdizadeh, F.: Application of self-collimated beams to realization of all optical photonic crystal encoder. Phys. E Low-dimensional Syst. Nanostructures 75, 77–85 (2016)

    Article  Google Scholar 

  45. Alipour-Banaei, H.: Proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectron. 11, 29–35 (2017)

    Article  Google Scholar 

  46. Hassangholizadeh-Kashtiban, M., Sabbaghi-Nadooshan, R., Alipour-Banaei, H.: A novel all optical reversible 4 × 2 encoder based on photonic crystals. Opt. Int. J. Light Electron Opt. 126, 2368–2372 (2015)

    Article  Google Scholar 

  47. Alipour-Banaei, H., Rabati, M.G., Abdollahzadeh-Badelbou, P., Mehdizadeh, F.: Effect of self-collimated beams on the operation of photonic crystal decoders. J. Electromagn. Waves Appl. 30, 1440–1448 (2016)

    Article  Google Scholar 

  48. Mehdizadeh, F., Alipour-Banaei, H., Serajmohammadi, S.: Study the role of non-linear resonant cavities in photonic crystal-based decoder switches. J. Modern Opt. 64, 1–7 (2017)

    Article  MathSciNet  Google Scholar 

  49. Daghooghi, T., Soroosh, M., Ansari-Asl, K.: A novel proposal for all-optical decoder based on photonic crystals. Photonic Netw. Commun. Published online (2017)

  50. Chattopadhyay, T., Roy, J.N.: An all-optical technique for a binary-to-quaternary encoder and a quaternary-to-binary decoder. J. Opt. A: Pure Appl. Opt. 11, 075501 (2009)

    Article  Google Scholar 

  51. Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S., Hassangholizadeh-Kashtiban, M.: A 2 × 4 all optical decoder switch based on photonic crystal ring resonators. J. Mod. Opt. 62, 430–434 (2015)

    Article  MathSciNet  Google Scholar 

  52. Zhang, C., Qiu, K.: Design and analysis of coherent OCDM en/decoder based on photonic crystal. Opt. Lasers Eng. 46, 582–589 (2008)

    Article  Google Scholar 

  53. Tavousi, A., Mansouri-Birjandi, M.A., Saffari, M.: Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators. Physica E 83, 101–106 (2016)

    Article  Google Scholar 

  54. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure. Appl. Opt. 56, 1799–1806 (2017)

    Article  Google Scholar 

  55. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: All optical 2-bit analog to digital converter using photonic crystal based cavities. Opt. Quant. Electron. 49(1), 38 (2017)

    Article  Google Scholar 

  56. Mehdizadeh, F., Soroosh, M., Alipour-Banaei, H., Farshidi, E.: A novel proposal for all optical analog-to-digital converter based on photonic crystal structures. IEEE Photonics J. 9, 1–11 (2017)

    Article  Google Scholar 

  57. Xu, C., Liu, X.: Photonic analog-to-digital converter using soliton self-frequency shift and interleaving spectral filters. Opt. Lett. 28, 986–988 (2003)

    Article  Google Scholar 

  58. Youssefi, B., Moravvej-Farshi, M.K., Granpayeh, N.: Two bit all-optical analog-to-digital converter based on nonlinear Kerr effect in 2D photonic crystals. Opt. Commun. 285, 3228–3233 (2012)

    Article  Google Scholar 

  59. Liu, Q., Ouyang, Z., Wu, C.J., Liu, C.P., Wang, J.C.: All-optical half adder based on cross structures in two-dimensional photonic crystals. Opt. Express 16(23), 18992–19000 (2008)

    Article  Google Scholar 

  60. Cheraghi, F., Soroosh, M., Akbarizadeh, G.: An ultra-compact all optical full adder based on nonlinear photonic crystal resonant cavities. Superlattices Microstruct. Published online (2017)

  61. Karkhanehchi, M.M., Parandin, F., Zahedi, A.: Design of an all optical half-adder based on 2D photonic crystals. Photon Netw. Commun. 33(2), 159–165 (2017)

    Article  Google Scholar 

  62. Jiang, Y.-C., Liu, S.-B., Zhang, H.-F., Kong, X.-K.: Realization of all optical half-adder based on self-collimated beams by two-dimensional photonic crystals. Opt. Commun. 348, 90–94 (2015)

    Article  Google Scholar 

  63. Alipour-Banaei, H., Seif-Dargahi, H.: Photonic crystal based 1-bit full-adder optical circuit by using ring resonators in a nonlinear structure. Photonics Nanostructures Fundam. Appl. 24, 29–34 (2017)

    Article  Google Scholar 

  64. Xavier, S.C., Arunachalam, K., Caroline, E., Johnson, W.: Design of two-dimensional photonic crystal-based all-optical binary adder. Opt. Eng. 52, 25201 (2013)

    Article  Google Scholar 

  65. Neisy, M., Soroosh, M., Ansari-Asl, K.: All optical half adder based on photonic crystal resonant cavities. Photonic Netw. Commun. Published online (2017)

  66. Rahmani, A., Mehdizadeh, F.: Application of nonlinear PhCRRs in realizing all optical half-adder. Opt. Quantum Electron. 50, 30–35 (2017)

    Article  Google Scholar 

  67. Mano, M.M.: Digital logic and computer design. Pearson Education India, (2017)

  68. Johnson, S.G., Joannopoulos, J.D.: Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8(3), 173–190 (2001)

    Article  Google Scholar 

  69. Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method Artech House. Norwood, MA (1995)

    MATH  Google Scholar 

  70. Qiu, M.: Effective index method for heterostructure slab waveguide based two dimensional photonic crystals. Appl. Phys. Lett. 81, 1163–1165 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Soroosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalali-Azizpoor, M.R., Soroosh, M. & Seifi-Kavian, Y. Application of self-collimated beams in realizing all-optical photonic crystal-based half-adder. Photon Netw Commun 36, 344–349 (2018). https://doi.org/10.1007/s11107-018-0786-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-018-0786-4

Keywords

Navigation