A novel scheme to suppress the third-order intermodulation distortion based on dual-parallel Mach–Zehnder modulator

Original Paper

Abstract

A scheme to enlarge the spurious free dynamic range (SFDR) of the microwave photonic link is proposed based on a dual-parallel Mach–Zehnder modulator (DPMZM). By properly adjusting the phase of the RF signals and the bias voltages of the DPMZM, the second-order spurious components in the optical carrier band (OCB) of the two sub-MZMs can be canceled out completely, and the third-order and fifth-order spurious components in the first-order upper sideband (1-USB) produced by one sub-MZM have equal amplitude but \(180{^{\circ }}\) phase difference with the other sub-MZM. Therefore, as the two optical beams are combined at the output of the DPMZM and the OCB and the 1-USB are abstracted by a bandpass filter to generate the transmitted signal, all the major optical spurious components that contribute to the third-order intermodulation distortion (IMD3) are canceled out. Theoretical analysis and simulation results show that the proposed scheme, without digital linearization and other optical processor, can suppress IMD3 approximately 30 dB and improve the SFDR by \(18~\hbox {dB}\,\hbox {Hz}^{2/3}\) compared with the conventional quadrature biased MZM system.

Keywords

Dual-parallel Mach–Zehnder modulator (DPMZM) Third-order intermodulation distortion (IMD3) Modulator linearization Spurious free dynamic range (SFDR) 

Notes

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (NSFC, Grants: 61471065, 61690195).

References

  1. 1.
    Zhu, M., Zhang, L., Wang, J., Cheng, L., Liu, C., Chang, G.K.: Radio-over-fiber access architecture for integrated broadband wireless services. J. Lightwave Technol. 31(23), 3614–3620 (2013)CrossRefGoogle Scholar
  2. 2.
    Li, X., Xiao, J., Yu, J.: Long-distance wireless mm-wave signal delivery at W-band. J. Lightwave Technol. 34(2), 661–668 (2016)CrossRefGoogle Scholar
  3. 3.
    Li, X., Yu, J., Xiao, J.: Demonstration of ultra-capacity wireless signal delivery at W-band. J. Lightwave Technol. 34(1), 180–187 (2016)CrossRefGoogle Scholar
  4. 4.
    Li, F., Xiao, X., Yu, J.: Real-time reception of four channels 50 Gb/s class high-level QAM-DMT signal in short reach. In: Optical Fiber Communication Conference. Optical Society of America. Th2A. 3 (2016)Google Scholar
  5. 5.
    He, J., Dong, H., Deng, R., Shi, J., Chen, L.: WDM-CAP-PON integration with VLLC system based on optical frequency comb. Opt. Commun. 374, 127–132 (2016)CrossRefGoogle Scholar
  6. 6.
    He, J., Li, T., Wen, X., Deng, R., Chen, M., Chen, L.: Adaptive modulation and intra-symbol frequency-domain averaging scheme for multiband OFDM UWB over fiber system. Opt. Commun. 358, 45–53 (2016)CrossRefGoogle Scholar
  7. 7.
    Zhang, J.: Memory-polynomial digital pre-distortion for linearity improvement of directly-modulated multi-IF-over-fiber LTE mobile fronthaul. In: Optical Fiber Communication Conference. Optical Society of America, TU2B. 3 (2016)Google Scholar
  8. 8.
    Maivan, L., He, J., Chen, M., Chen, L.: A PAPR reduction scheme based on a new spreading code in optical direct detection OFDM system. Photon Netw. Commun. 1(31), 155–161 (2016)CrossRefGoogle Scholar
  9. 9.
    Gordon, G.S., Crisp, M.J., Penty, R.V., White, I.H.: High-order distortion in directly modulated semiconductor lasers in high-loss analog optical links with large RF dynamic range. J. Lightwave Technol. 29(23), 3577–3586 (2011)CrossRefGoogle Scholar
  10. 10.
    Liu, X., Liu, Z., Li, J., Shang, T.: Performance improvement of optical single sideband signal using an integrated Mach–Zehnder modulator. Fiber Integr. Opt. 29(6), 453–465 (2010)CrossRefGoogle Scholar
  11. 11.
    Cho, T.S., Kim, K.: Effect of third-order intermodulation on radio-over-fiber systems by a dual-electrode Mach–Zehnder modulator with ODSB and OSSB signals. J. Lightwave Technol. 24(5), 2052–2058 (2006)CrossRefGoogle Scholar
  12. 12.
    Zhu, G., Liu, W., Fetterman, H.R.: A broadband linearized coherent analog fiber-optic link employing dual parallel Mach–Zehnder modulators. IEEE Photonics Technol. Lett. 21(21), 1627–1629 (2009)CrossRefGoogle Scholar
  13. 13.
    Kim, S.K., Liu, W., Pei, Q., Dalton, L.R., Fetterman, H.R.: Nonlinear intermodulation distortion suppression in coherent analog fiber optic link using electro-optic polymeric dual parallel Mach–Zehnder modulator. Opt. Express 19(8), 7865–7871 (2011)CrossRefGoogle Scholar
  14. 14.
    Liang, D., Tan, Q., Jiang, W., Zhu, Z., Li, X., Yao, Z.: Influence of power distribution on performance of intermodulation distortion suppression. IEEE Photonics Technol. Lett. 27(15), 1639–1641 (2015)CrossRefGoogle Scholar
  15. 15.
    Zhou, Y., Zhou, L., Liu, S., Zhu, H., Wang, M., Li, X., Chen, J.: Linearity characterization of a dual-parallel Mach–Zehnder modulator. In: Optical Fiber Communication Conference. Optical Society of America, W2A. 28 (2016)Google Scholar
  16. 16.
    Zhou, Y., Zhou, L., Wang, M., Xia, Y., Zhong, Y., Li, X., Chen, J.: Linearity characterization of a dual-parallel silicon Mach–Zehnder modulator. IEEE Photonics J. 8(6), 7805108 (2016)Google Scholar
  17. 17.
    Li, J., Zhang, Y.C., Yu, S., Jiang, T., Xie, Q., Gu, W.: Third-order intermodulation distortion elimination of microwave photonics link based on integrated dual-drive dual-parallel Mach–Zehnder modulator. Opt. Lett. 38(21), 4285–4287 (2013)CrossRefGoogle Scholar
  18. 18.
    Jiang, W., Tan, Q., Qin, W., Liang, D., Li, X., Ma, H., Zhu, Z.: A linearization analog photonic link with high third-order intermodulation distortion suppression based on dual-parallel Mach–Zehnder modulator. IEEE Photonics J. 7(3), 7902208 (2015)CrossRefGoogle Scholar
  19. 19.
    Li, X., Zhao, S., Zhu, Z., Li, Y., Zhao, J., Liu, Y.: Dynamic range improvement of broadband microwave photonic links using a linearized single-sideband modulator. Opt. Commun. 350, 170–177 (2015)CrossRefGoogle Scholar
  20. 20.
    Lim, C., Nirmalathas, A., Lee, K.L., Novak, D., Waterhouse, R.: Intermodulation distortion improvement for fiber–radio applications incorporating OSSB\(+\)C modulation in an optical integrated-access environment. J. Lightwave Technol. 25(6), 1602–1612 (2007)CrossRefGoogle Scholar
  21. 21.
    Ferreira, A., Silveira, T., Fonseca, D., Ribeiro, R., Monteiro, P.: Highly linear single sideband transmitter for radio-over-fiber systems. IEEE Photonics Technol. Lett. 23(22), 1718–1720 (2011)CrossRefGoogle Scholar
  22. 22.
    Ferreira, A., Silveira, T., Fonseca, D., Ribeiro, R., Monteiro, P.: Highly linear integrated optical transmitter for subcarrier multiplexed systems. IEEE Photonics Technol. Lett. 21(7), 438–440 (2009)CrossRefGoogle Scholar
  23. 23.
    Li, S., Zheng, X., Zhang, H., Zhou, B.: Highly linear radio-over-fiber system incorporating a single-drive dual-parallel Mach–Zehnder modulator. IEEE Photonics Technol. Lett. 22(24), 1775–1777 (2010)CrossRefGoogle Scholar
  24. 24.
    Sun, J., Yu, L., Zhong, Y.: A single sideband radio-over-fiber system with improved dynamic range incorporating a dual-electrode dual-parallel Mach–Zehnder modulator. Opt. Commun. 336, 315–318 (2015)CrossRefGoogle Scholar
  25. 25.
    Kaminow, I.P., Li, T., Willner, A.E.: Optical Fiber Telecommunications Volume VIA, Components and Subsystems, 6th edn. Academic Press (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Information Photonics and Optical Communications and Beijing Key Laboratory of Space-Ground Interconnection and Convergence, School of Electronic EngineeringBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations