Skip to main content
Log in

A hybrid WDM ring–tree topology delivering efficient utilization of bandwidth over resilient infrastructure

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

This paper proposed a hybrid WDM ring–tree topology which employs spectrally efficient 60 Gbps non-return-to-zero/polarization shift keying optical orthogonal modulated signals. The reconfigurable optical add/drop multiplexers, optical cross-connects and semiconductor optical amplifiers are utilized to make hybrid ring–tree architecture. Each optical add/drop multiplexer node is connected to tree topology to further increase the number of users. The main contribution of the proposed spectrally efficient hybrid optical network is to support the maximum number of users within limited bandwidth for future communication networks. Also, the proposed resilient ring–tree architecture has advantages such as high optical node density and bandwidth/spectral efficiency as compared to conventional packet-switched optical access network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Guiomar, F.P., Amado, S.B., Ferreira, R.M., Reis, J.D., Rossi, S.M., Chiuchiarelli, A., de Oliveira, J.R.F., Teixeira, A.L., Pinto, A.N.: Multicarrier digital backpropagation for 400G optical superchannels. J. Lightwave Technol. 34(8), 1896–1907 (2016)

    Article  Google Scholar 

  2. Roberts, K., Zhuge, Q., Monga, I., Gareau, S., Laperle, C.: Beyond 100 Gb/s: capacity, flexibility and network optimization. J. Opt. Commun. Netw. 9(4), C12–24 (2017)

    Article  Google Scholar 

  3. Pascual, M.D.G., Vujicic, V., Braddell, J., Smyth, F., Anandarajah, P., Barry, L.: Photonic integrated gain switched optical frequency comb for spectrally efficient optical transmission systems. IEEE Photonics J. 9(3), 202008 (2017)

    Article  Google Scholar 

  4. Yoshima, S., Sun, Y., Liu, Z., Bottrill, K.R.H., Parmigiani, F., Richardson, D.J., Petropoulos, P.: Mitigation of nonlinear effects on WDM QAM signals enabled by optical phase conjugation with efficient bandwidth utilization. J. Lightwave Technol. 35(4), 971–978 (2017)

    Article  Google Scholar 

  5. Qiu, Y., Xu, J.: Efficient hybrid grouping spectrum assignment to suppress spectrum fragments in flexible grid optical networks. J. Lightwave Technol. 35(14), 2823–2832 (2017)

    Article  Google Scholar 

  6. Garg, A.K., Kaler, R.S.: Performance analysis of an integrated scheme in optical burst switching high-speed networks. Chin. Opt. Lett. 6(4), 244–247 (2008)

    Article  Google Scholar 

  7. Li, G., Simha, R.: On the wavelength assignment problem in multifiber WDM star and ring networks. IEEE Trans. Netw. 9(1), 60–68 (2001)

    Article  Google Scholar 

  8. Yeh, C.-H., Chi, S.: Self-healing ring-based time-sharing passive optical networks. IEEE Photonics Technol. Lett. 19(15), 1139–1141 (2007)

    Article  Google Scholar 

  9. Feng, T., Ruan, L.: Design of a survivable hybrid wireless optical broadband access network. J. Opt. Commun. Netw. 3(5), 458–464 (2011)

    Article  Google Scholar 

  10. Lin, W.-P., Kao, M.-S., Chi, S.: The modified star-ring architecture for high capacity subcarrier multiplexed passive optical networks. J. Lightwave Technol. 19(1), 32–39 (2001)

    Article  Google Scholar 

  11. Singh, S., Singh, S.: Investigation on four wave mixing effect in various optical fibers for different spectral efficient orthogonal modulation formats. Opt. Laser Technol. 76, 64–68 (2016)

    Article  Google Scholar 

  12. Shao, Y., Chi, N.: High spectral-efficiency 100 Gbps transmission using DRZ, DQPSK and PolSK three-dimension orthogonal modulation. Opt. Commun. 285(1), 1049–1052 (2012)

    Article  Google Scholar 

  13. Chi, N., Zhang, J., Holm-Neilsen, P.V., Peucheret, C., Jeppesen, P.: Transmission and transparent wavelength conversion of an optical labeled signal using ASK/DPSK orthogonal modulation. IEEE Photonics Technol. Lett. 15(5), 760–762 (2003)

    Article  Google Scholar 

  14. Shao, Y., Chen, L., Wen, S., Xiao, T., Cheng, L., Xu, H., Pi, Y.: Novel optical orthogonally modulation schemes for superimposing DPSK signal on dark RZ signal. Opt. Commun. 281(4), 3658–3667 (2008)

    Article  Google Scholar 

  15. Singh, S., Singh, S., Kaur, R., Kaler, R.S.: Performance investigation of optical multicast overlay system using orthogonal modulation format. Opt. Commun. 338, 58–63 (2015)

    Article  Google Scholar 

  16. Singh, S., Singh, S.: Performance analysis of hybrid WDM-OTDM optical multicast overlay system employing 120 Gbps polarization and subcarrier multiplexed unicast signal with 40 Gbps multicast signal. Opt. Commun. 385, 36–42 (2016)

    Article  Google Scholar 

  17. Ramamurthy, S., Sahasrabuddhe, L., Mukherjee, B.: Survivable WDM mesh networks. J. Lightwave Technol. 21(4), 870–883 (2003)

    Article  Google Scholar 

  18. Zhu, Z., Hernandez, V., Jeon, M., Cao, J., Pan, Z., Yoo, S.J.B.: RF photonics signal processing in subcarrier multiplexed optical-label switching communication systems. J. Lightwave Technol. 21(12), 3155–3166 (2003)

    Article  Google Scholar 

  19. Prat, J., Lazaro, J., Chanclou, P., Cascelli, S.: Passive OADM network element for hybrid ring-tree WDM/TDM-PON. In: ECOC 2009, 20–24 September, Vienna, Austria (2009)

  20. Singh, S.: Performance comparison of optical network topologies in the presence of optimized semiconductor optical amplifiers. J. Opt. Commun. Netw. 1(4), 313–323 (2009)

    Article  Google Scholar 

  21. Gerstel, O., Jinno, M., Lord, A., Yoo, S.J.B.: Elastic optical networking: a new dawn for the optical layer? IEEE Commun. Mag. 50(2), S12–S20 (2012)

    Article  Google Scholar 

  22. Fan, H., Li, J., Sun, X.: Cost-effective scalable and robust star-cross-bus PON architecture using a centrally controlled hybrid restoration mechanism. J. Opt. Commun. Netw. 5(7), 730–740 (2013)

    Article  Google Scholar 

  23. Zhu, Z., Lu, W., Zhang, L., Ansari, N.: Dynamic service provisioning in elastic optical networks with hybrid single-/multi-path routing. J. Lightwave Technol. 31(1), 15–22 (2013)

    Article  Google Scholar 

  24. Deng, N., Xue, Q., Li, M., Gong, G., Qiao, C.: An optical multi-ring burst network for a data center In: OFC , OTh1A.5 (2013)

  25. Ji, F., Chen, X., Lu, W., Rodrigues, J., Zhu, Z.: Dynamic p-cycle protection in spectrum-sliced elastic optical networks. J. Lightwave Technol. 32(6), 1190–1199 (2014)

    Article  Google Scholar 

  26. Chen, X., Ji, F., Zhu, Z.: Service availability oriented p-cycle protection design in elastic optical networks. J. Opt. Commun. Netw. 6(10), 901–910 (2014)

    Article  Google Scholar 

  27. Chen, X., Zhu, S., Jiang, L., Zhu, Z.: On spectrum efficient failure-independent path protection p-cycle design in elastic optical networks. J. Lightwave Technol. 33(17), 3719–3729 (2015)

    Article  Google Scholar 

  28. Yang, H., Zhang, J., Zhao, Y., Ji, Y., Jialin, W., Lin, Y., Han, J., Lee, Y.: Performance evaluation of multi-stratum resources integrated resilience for software defined inter-data center interconnect. Opt. Express 23(10), 13384–13398 (2015)

    Article  Google Scholar 

  29. Kaur, R., et al.: Four wave mixing power suppression in hybrid network topology using optical phase conjugation module. Optik 126, 347–349 (2015)

    Article  Google Scholar 

  30. Zhang, M., You, C., Zhu, Z.: On the parallelization of spectrum defragmentation reconfigurations in elastic optical networks. IEEE/ACM Trans. Netw. 24(5), 2819–2833 (2016)

    Article  Google Scholar 

  31. Singh, S., Singh, S.: Performance analysis of spectrally encoded hybrid WDM-OCDMA network employing optical orthogonal modulation format against eavesdropper. Int. J. Electron. Commun. (AEU) 82, 492–501 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank AICTE, New Delhi, for their funding to research projects No.: 20/AICTE/RIFD/RPS (POLICY-1)60/2013-14. One of the authors (Sukhbir Singh) is grateful to the authorities of Sant Longowal Institute of Engineering and Technology, Longowal, India, for providing fellowship (SRF) and research facilities. We would also like to thank the reviewers for their valuable suggestions which brought the manuscript into the present shape.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukhbir Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Singh, S. A hybrid WDM ring–tree topology delivering efficient utilization of bandwidth over resilient infrastructure. Photon Netw Commun 35, 325–334 (2018). https://doi.org/10.1007/s11107-017-0755-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-017-0755-3

Keywords

Navigation