Advertisement

Photonic Network Communications

, Volume 30, Issue 3, pp 403–415 | Cite as

On the design of 5G transport networks

  • Matteo Fiorani
  • Björn Skubic
  • Jonas Mårtensson
  • Luca Valcarenghi
  • Piero Castoldi
  • Lena Wosinska
  • Paolo Monti
Article

Abstract

Future 5G systems will pave the way to a completely new societal paradigm where access to information will be available anywhere, anytime, and to anyone or anything. Most of the ongoing research and debate around 5G systems are focusing on the radio network segment (e.g., how to offer high peak-rates per subscriber, and how to handle a very large number of simultaneously connected devices without compromising on coverage, outage probability, and latency). On the other hand, understanding the impact that 5G systems will have on the transport network (i.e., the segment in charge of the backhaul of radio base stations and/or the fronthaul of remote radio units) is also very important. This paper provides an analysis of the key architectural challenges for the design of a flexible 5G transport infrastructure able to adapt in a cost-efficient way to the plethora of requirements coming from the large number of envisioned future 5G services.

Keywords

5G transport Backhaul Fronthaul  Network sharing Network function virtualization (NFV ) Flexible transport 

References

  1. 1.
    Networked Society Essential, Ericsson Booklet. http://www.ericsson.com
  2. 2.
    The METIS 2020 Project: Laying the Fundation of 5G. http://www.metis2020.com
  3. 3.
    Scenarios, Requirements and KPIs for 5G Mobile and Wireless System, EU FP7 Project METIS, Deliverable D1.1 (2013)Google Scholar
  4. 4.
    The 5G Infrastructure Public Private Partnership. http://5g-ppp.eu/projects/
  5. 5.
    User Equipment (UE) Radio Access Capabilities (Release 12), 3GPP TS 136.306 (2011)Google Scholar
  6. 6.
    Fiorani, M., Monti, P., Skubic, B., Mårtensson, J., Valcarenghi, L., Castoldi, P., Wosinska, L.: Challenges for 5G transport networks. In: Proceedings of IEEE ANTS (2014)Google Scholar
  7. 7.
  8. 8.
    Rostami, A., Wang, K., Ghebretensae, Z., Öhlen, P., Skubic, B.: First experimental demonstration of orchestration of optical transport, RAN and cloud based on SDN. In: Proceedings of OFC (2015)Google Scholar
  9. 9.
  10. 10.
  11. 11.
  12. 12.
    Pfeiffer, T.: Next generation mobile fronthaul architectures. In: Proceedings of OFC (2015)Google Scholar
  13. 13.
    Energy Efficiency Analysis of the Reference Systems, Areas of Improvements and Target Breakdown, EU FP6 Project EARTH Deliverable D2.3 (2012)Google Scholar
  14. 14.
    Ericsson Mobility Report Mobile World Congress Edition, Ericsson White Paper (2015)Google Scholar
  15. 15.
    Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2014–2019, Cisco White Paper (2015)Google Scholar
  16. 16.
    5G White Paper, Next Generation Mobile Networks (NGMN) Alliance White Paper (2015)Google Scholar
  17. 17.
    Consolidated requirements for European next-generation optical access networks, EU FP7 Project OASE, Deliverable D2.2.2 (2012)Google Scholar
  18. 18.
    Astely, D., Dahlman, E., Fodor, G., Parkvall, S., Sachs, J.: LTE release 12 and beyond [accepted from open call]. IEEE Commun. Mag. 51(7), 154–160 (2013)CrossRefGoogle Scholar
  19. 19.
    Strin, S., Kang, M., Jin, J., Kim, S., Kim, H., Moh, S.: Vehicle-to-Vehicle emergency message dissemination through the WiBro network. In: Proceedings of INC, pp. 1–6 (2010)Google Scholar
  20. 20.
    Cisco Global Cloud Index: Forecast and Methodology, 2013–2018, Cisco White Paper (2014)Google Scholar
  21. 21.
    Hemmati, M., Javadtalab, A., Shirehjini, A., Shirmohammadi, S., Arici, T.: Game as video: bit rate reduction through adaptive object encoding. In: Proceedings of the ACM NOSSDAV, pp. 7–12 (2013)Google Scholar
  22. 22.
    Satzger, B., Hummer, W., Leitner, P., Dustdar, S.: Esc: towards an elastic stream computing platform for the cloud. In: Proceedings of IEEE CLOUD, pp. 348–355 (2011)Google Scholar
  23. 23.
    Guidelines for LTE Backhaul Traffic Estimation, Next Generation Mobile Networks (NGMN) Alliance White Paper (2011)Google Scholar
  24. 24.
    Feasibility study for Further Advancements for E-UTRA (LTE-Advanced), 3GPP TR 36.912 (2014)Google Scholar
  25. 25.
    Small cell backhaul requirements, Next Generation Mobile Networks (NGMN) Alliance White Paper (2012)Google Scholar
  26. 26.
    Chih-Lin, I., Rowell, C., Han, Shuangfeng, Xu, Zhikun, Li, Gang, Pan, Zhengang: Toward green and soft: a 5G perspective. IEEE Commun. Mag. 52(2), 66–73 (2014)CrossRefGoogle Scholar
  27. 27.
  28. 28.
  29. 29.
    Standard for Radio Over Ethernet Encapsulations and Mappings, IEEE 1904.3 Task ForceGoogle Scholar
  30. 30.
    Haddad, A., Gagnaire, M.: Radio-over-Fiber (RoF) for mobile backhauling: a technical and economic comparison between analog and digitized RoF. In: Proceedings of ONDM, pp. 132–137 (2014)Google Scholar
  31. 31.
    C-RAN The Road Towards Green RAN v2.6, China Mobile White Paper (2014)Google Scholar
  32. 32.
    Andrews, J.G., Buzzi, S., Choi, Wan, Hanly, S.V., Lozano, A., Soong, A.C.K., Zhang, J.C.: What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)CrossRefGoogle Scholar
  33. 33.
    Tombaz, S., Monti, P., Farias, F., Fiorani, M., Wosinska, L., Zander, J.: Is backhaul becoming a bottleneck for green wireless access networks? In: Proceedings of IEEE ICC, pp. 4029–4035 (2014)Google Scholar
  34. 34.
    Fiorani, M., Tombaz, S., Monti, P., Casoni, M., Wosinska, L.: Green backhauling for rural areas. In: Proceedings of ONDM (2014)Google Scholar
  35. 35.
    Hogan, M.: Mobile Backhaul and Synchronization for Heterogeneous Networks, Internetional Telecom Sync Formum (ITSF) (2012)Google Scholar
  36. 36.
    Rusek, F., Persson, D., Buon Kiong, L., Larsson, E.G., Marzetta, T.L., Edfors, O., Tufvesson, F.: Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process. Mag. 30(1), 40–60 (2013)CrossRefGoogle Scholar
  37. 37.
    Timmers, M., Guenach, M., Nuzman, C., Maes, J., Fast, G.: Evolving the copper access network. IEEE Commun. Mag. 51(8), 74–79 (2013)CrossRefGoogle Scholar
  38. 38.
    Weiler, R., Weiler, R.J., Peter, M., Keusgen, W., Calvanese-Strinati, E., De Domenico, A., Filippini, I., Capone, A., Siaud, I., Ulmer-Moll, A., Maltsev, A., Haustein, T., Sakaguchi, K.: Enabling 5G backhaul and access with millimeter-waves. In: Proceedings of EuCNC, pp. 1–5 (2014)Google Scholar
  39. 39.
    Yuan Li, Pappas, N., Angelakis, V., Pioro, M., Yuan, Di: Resilient topology design for free sspace optical cellular backhaul networking. In: Proceedings of IEEE Globecom pp. 487–492 (2014)Google Scholar
  40. 40.
    Skubic, B., Pappa, I.: Energy consumption analysis of converged networks: node consolidation versus metro simplification. In: Proceedings of OFC, pp. 1–3 (2013)Google Scholar
  41. 41.
    Zhang, S., Xia, M., Dahlfort, S., Routing, Fiber: wavelength assignment and multiplexing for DWDM-centric converged metro/aggregation networks. In: Proceedings of ECOC, pp. 1–3 (2013)Google Scholar
  42. 42.
    Öhlen, P., Skubic, B., Ghebretensae, Z., John, W., Shirazipour, M.: Software-defined networking in a multi-purpose DWDM-centric metro/aggregation network. In: Proceedings of IEEE Globecom (2013)Google Scholar
  43. 43.
    Network Functions Virtualisation, ETSI White Paper (2012)Google Scholar
  44. 44.
    Basta, A., Kellerer, W., Hoffmann, M., Hoffmann, K., Schmidt, E.: A virtual SDN-enabled LTE EPC architecture: A case study for S-/P-gateways gunctions. In: Proceedings of IEEE SDN4FNS, pp. 1–7 (2013)Google Scholar
  45. 45.
    Raza, M.R., Fiorani, M., Monti, P., Skubic, B., Mårtensson, J., Wosinska, L.: Power and cost modeling for 5G transport networks, to appear. In: Proceedings of IEEE ICTON (2015)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Matteo Fiorani
    • 1
  • Björn Skubic
    • 2
  • Jonas Mårtensson
    • 3
  • Luca Valcarenghi
    • 4
  • Piero Castoldi
    • 4
  • Lena Wosinska
    • 1
  • Paolo Monti
    • 1
  1. 1.KTH Royal Institute of TechnologyKistaSweden
  2. 2.Ericsson ResearchKistaSweden
  3. 3.Acreo Swedish ICTKistaSweden
  4. 4.Scuola Superiore Sant’Anna (SSSUP)PisaItaly

Personalised recommendations