Photonic Network Communications

, Volume 31, Issue 3, pp 550–558 | Cite as

Novel multi-band DFT-spread OFDM-PON systems based on intensity modulation and direct detection for cloud computing

  • Xiaoxue Gong
  • Yuhuai Peng
  • Yejun Liu
  • Hui Li


Passive optical network (PON) has become a preferable access technique for cloud computing due to its elastic bandwidth capacity and transmission stability. In particular, the orthogonal frequency division multiplexing PON based on intensity modulation and direct detection (IM/DD OFDM-PON) has gained extensive attention since it is a cost- and spectral-efficient system, while for the traditional IM/DD OFDM-PON, the use of OFDM could lead to the high peak-to-average power ratio (PAPR), and it is impossible to satisfy the different QoS degrees required by ONUs under a cloud environment. Thus in this paper, we design a novel multi-band discrete Fourier transform (DFT)-spread IM/DD OFDM-PON. The DFT-spread is utilized to reduce the PAPR; meanwhile, a multi-band power allocation and bit loading are achieved to satisfy the different degrees of QoS requirement owned by ONUs. The simulation results show that our system has the better performance of PAPR reduction compared with the traditional IM/DD OFDM-PON; meanwhile, the different QoS degrees of all ONUs are guaranteed.


Multi-band DFT-spread IM/DD OFDM-PON PAPR reduction QoS Cloud computing 



This work was supported in part by the National Natural Science Foundation of China (61401082, 61471109, 61172051), the Fundamental Research Funds for the Central Universities (N140405005, N130817002, N130404002, N120804002), the Foundation of the Education Department of Liaoning Province (L2014089), the Liaoning BaiQianWan Talents Program, and the National High-Level Personnel Special Support Program for Youth Top-Notch Talent.


  1. 1.
    Guo, L., Cao, J., Yu, H., Li, L.: Path-based routing provisioning with mixed shared protection in WDM mesh networks. IEEE/OSA J. Lightw. Technol. 24(3), 1129–1141 (2006)CrossRefGoogle Scholar
  2. 2.
    Hou, W., Guo, L., Wei, X.: Robust and integrated grooming for power- and port-cost-efficient design in IP over WDM networks. IEEE/OSA J. Lightw. Technol. 29(20), 3035–3047 (2011)CrossRefGoogle Scholar
  3. 3.
    Effenberger, F., Mukai, H., Park, S., Pfeiffer, T.: Next-generation PON—part II: candidate systems for next-generation PON. IEEE Commun. Mag. 47(11), 50–57 (2009)CrossRefGoogle Scholar
  4. 4.
    Andre, N.S., Louchet, H., Habel, K., Richter, A.: Analytical formulation for SNR prediction in DMDD OFDM-based access systems. IEEE Photon. Technol. Lett. 26(12), 1255–1258 (2014)CrossRefGoogle Scholar
  5. 5.
    Sanchez, C., Ortegea, B., Wei, J.L., Tang, J.M., Capmany, J.: Analytical formulation of directly modulated OOFDM signals transmitted over an IM/DD dispersive link. Opt. Express 21(6), 7651–7666 (2013)CrossRefGoogle Scholar
  6. 6.
    Armstrong, J.: OFDM for optical communications. IEEE/OSA J. Lightw. Technol. 27(3), 189–204 (2009)CrossRefGoogle Scholar
  7. 7.
    Zhao, Y., Qiao, Y., Ji, Y.: Power efficient and colorless PON upstream system using asymmetric clipping optical OFDM and TDMA technologies. Opt. Commun. 285(2012), 1787–1791 (2012)CrossRefGoogle Scholar
  8. 8.
    Jin, X.Q., Groenewald, J., Hugues-Salas, E., Giddings, R.P., Tang, J.M.: Upstream power budgets of IMDD optical OFDMA PONs incorporating RSOA intensity modulator-based colorless ONUs. IEEE/OSA J. Lightw. Technol. 31(12), 1914–1920 (2013)CrossRefGoogle Scholar
  9. 9.
    Ruprecht, C., Chen, Y., Fritzsche, D., Hoyningen-Huene, J., Hanik, N., Weis, E., Breuer, D., Rosenkranz, W.: 37.5 km urban field trial of OFDMA-PON using colorless ONUs with dynamic bandwidth allocation and TCM. IEEE/OSA J. Opt. Commun. Netw. 7(1), A153–A161 (2015)CrossRefGoogle Scholar
  10. 10.
    Chen, M., He, J., Chen, L.: Real-time optical OFDM long-reach PON system over 100 km SSMF using a directly modulated DFB laser. IEEE/OSA J. Opt. Commun. Netw. 6(1), 18–25 (2014)CrossRefGoogle Scholar
  11. 11.
    Guo, L.: LSSP: a novel local segment-shared protection for multi-domain optical mesh networks. Comput. Commun. 30(8), 1794–1801 (2007)CrossRefGoogle Scholar
  12. 12.
    Chen, H., Yu, J., Xiao, J., Cao, Z., Li, F., Chen, L.: Nonlinear effect mitigation based on PAPR reduction using electronic pre-distortion technique in direct-detection optical OFDM system. Optical Fiber Technology 19(2013), 387–391 (2013)CrossRefGoogle Scholar
  13. 13.
    Chen, L., Krongold, B., Evans, J.: Theoretical characterization of nonlinear clipping effects in IM/DD optical OFDM systems. IEEE Trans. Commun. 60(8), 2304–2312 (2012)CrossRefGoogle Scholar
  14. 14.
    Popoola, W.O., Ghassemlooy, Z., Stewart, B.G.: Pilot-assisted PAPR reduction technique for optical OFDM communication systems. IEEE/OSA J. Lightw. Technol. 32(7), 1374–1382 (2014)CrossRefGoogle Scholar
  15. 15.
    Kanonakis, K., Giacoumidis, E., Tomkos, I.: Physical-layer-aware MAC schemes for dynamic subcarrier assignment in OFDMA-PON networks. IEEE/OSA J. Lightw. Technol. 30(12), 1915–1923 (2012)Google Scholar
  16. 16.
    Lim, W., Kourtessis, P., Milosavljevic, M., Senior, J.M.: Dynamic subcarrier allocation for 100 Gbps, 40 km OFDMA-PONs with SLA and CoS. IEEE/OSA J. Lightw. Technol. 31(7), 1055–1062 (2013)CrossRefGoogle Scholar
  17. 17.
    Hou, W., Guo, L., Cao, J., Wu, J., Hao, L.Y.: Green multicast grooming based on optical bypass technology. Opt. Fiber Technol. 17(2), 111–119 (2011)CrossRefGoogle Scholar
  18. 18.
    Yang, Q., He, Z., Yang, Z., Yu, S., Yi, X., Shieh, W.: Coherent optical DFT-spread OFDM transmission using orthogonal band multiplexing. Opt. Express 20(3), 2379–2385 (2012)CrossRefGoogle Scholar
  19. 19.
    Li, F., Yu, J., Fang, Y., Dong, Z., Li, X., Chen, L.: Demonstration of DFT-spread 256QAM-OFDM signal transmission with cost-effective directly modulated laser. Opt. Express 22(7), 8742–8748 (2014)CrossRefGoogle Scholar
  20. 20.
    Peng, L., Helard, M., Haese, S.: Optimization of multi-band DFT-Spread DMT system for polymer optical fiber communications. In: Proceedings of ICC, pp. 3862–3867 (2013)Google Scholar
  21. 21.
    Kumar, P.: Performance evaluation of DFT-spread OFDM and DCT-spread OFDM for underwater acoustic communication. In: Proceedings of VTC Fall, 1–5 (2012)Google Scholar
  22. 22.
    Truong, T., Arzel, M., Lin, H., Jahan, B., Jezequel, M.: DFT precoded OFDM—an alternative candidate for next generation PONs. IEEE/OSA J. Lightw. Technol. 32(6), 1228–1238 (2014)CrossRefGoogle Scholar
  23. 23.
    Cano, I.N., Escayola, X., Schindler, P.C., Santos, M.C., Polo, V., Leuthold, J., Tomkos, I., Prat, J.: Experimental demonstration of a statistical OFDM-PON with multiband ONUs and elastic bandwidth allocation. IEEE/OSA J. Lightw. Technol. 7(1), A73–A79 (2015)Google Scholar
  24. 24.
    Cano, I.N., Escayola, X., Schindler, P., Santos, M. C., Polo, V., Leuthold, J.: J. Prat. Experimental demonstration of multi-band upstream in statistical OFDM-PONs and comparison with digital subcarrier assignment. In: Proceedings of OFC, pp. 1–3 (2014)Google Scholar
  25. 25.
    Cano, I., Santos, M., Prat, J.: Optimum carrier to signal power ratio for remote heterodyne DD-OFDM in PONs. IEEE Photon. Technol. Lett. 25(13), 1242–1245 (2013)CrossRefGoogle Scholar
  26. 26.
    Sanchez, C., Wei, J., Ortega, B., Capmany, J.: Comprehensive impairment and performance description of directly modulated/detected OOFDM systems. IEEE/OSA J. Lightw. Technol. 31(20), 3277–3288 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.College of Information Science and EngineeringNortheastern UniversityShenyangChina

Personalised recommendations