Photonic Network Communications

, Volume 31, Issue 2, pp 285–293 | Cite as

Performance of ADC resolution-limited optical coherent receivers with DA-ML carrier phase estimation



We investigate the performance of decision-aided maximum likelihood (DA-ML) carrier phase estimation (CPE) algorithm in analog-to-digital converter (ADC) resolution-limited optical coherent receivers. The signal model of ADC resolution-limited receiver is established, and its bit error rate with DA-ML CPE in M-ary phase-shift keying (MPSK) system is analyzed. Simulation results show that \(N+2\) (N bits per symbol)-bit resolution is acceptable and \(N+3\) bit is sufficient for DA-ML receiver in MPSK \((M=4, 8, 16)\) system, and for 16-ary quadrature amplitude modulation system, 6-bit resolution is reasonable. Simulation and theoretical analyses both indicate that the optimal ADC quantization range equals to the average amplitude of received symbols which carry the information symbols with the highest energy on the constellation.


Optical coherent receiver Phase estimation DA-ML ADC resolution Quantization range 


  1. 1.
    Taylor, M.G.: Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments. IEEE Photon. Technol. Lett. 16(2), 674–676 (2004)CrossRefGoogle Scholar
  2. 2.
    Ip, E., Kahn, J.M.: Digital equalization of chromatic dispersion and polarization mode dispersion. IEEE J. Lightwave Technol. 25(8), 2033–2043 (2007)CrossRefGoogle Scholar
  3. 3.
    Ly-Gagnon, D.-S., Ly-Gagnon, D., Tsukamoto, S., Katoh, K., et al.: Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation. IEEE J. Lightwave Technol. 24(1), 12–21 (2006)CrossRefGoogle Scholar
  4. 4.
    Zhang, S., Kam, P.-Y., Yu, C., Chen, J.: Decision-Aided carrier phase estimation for coherent optical communications. IEEE J. Lightwave Technol. 28(11), 1597–1607 (2010)CrossRefGoogle Scholar
  5. 5.
    Kikuchi, K.: Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation. IEEE J. Sel. Top. Quantum Electron. 12(4), 563–570 (2006)CrossRefGoogle Scholar
  6. 6.
    Goldfarb, G., Li, G.: Estimation of QPSK homodyne detection with carrier phase estimation using digital signal processing. Opt. Express. 14(18), 8043–8053 (2006)CrossRefGoogle Scholar
  7. 7.
    Meiyappan, A., Kam, P.-Y., Kim, H.: Performance of decision-aided maximum-likelihood carrier phase estimation with frequency offset. Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (OFC/NFOEC), 2012, pp. 1–3. (Jan 2012)Google Scholar
  8. 8.
    Zhai, W., Chen, J., Shen, J., Yu, C.: Cold-start of optical coherent receiver with decision-aided maximum likelihood carrier phase estimation. Acta Photonica Sinica. 43(1 Suppl), 1–4 (2014)Google Scholar
  9. 9.
    Savory, S.J.: Digital signal processing options in long haul transmission. Optical Fiber Communication and National Fiber Optic Engineers Conference (OFC/NFOEC). 2008, pp. 1–3 (Feb 2008)Google Scholar
  10. 10.
    Leven, A., Kaneda, N., Koch, U.V., Chen, Y.K.: Coherent receivers for practical optical communication systems. Optical Fiber Communication and the National Fiber Optic Engineers Conference (OFC/NFOEC). 2007, pp. 1–3 (Mar 2007)Google Scholar
  11. 11.
    Poulton, K., Neff, R., Setterberg, B., et al.: A 20 GS/s 8 b ADC with a 1 MB memory in \(0.18\upmu \text{ m }\) CMOS. IEEE International Solid-State Circuits Conference (ISSCC). 2003, vol. 1, pp. 318–319 (Feb 2003)Google Scholar
  12. 12.
    Faerbert, A., Langenbach, S., Stojanovic, N., et al.: Performance of a 10.7 Gb/s receiver with digital equaliser using maximum likelihood sequence estimation. IEEE European Conference on Optical Communication (ECOC), 2004, pp. PD-Th4.1.5 (Sept 2004)Google Scholar
  13. 13.
    Cheng, W., Ali, W., Liu, K., et al.: A 3b 40GS/s ADC-DAC in \(0.12\upmu \text{ m }\) SiGe. IEEE International Solid-State Circuits Conference (ISSCC). 2004, vol. 1, pp. 262–263 (2004)Google Scholar
  14. 14.
    Schvan, P., Pollex, D., Wang, S.-S., et al.: A 22GS/s 5b adc in \(0.13\upmu \text{ m }\) SiGe BiCMOS. IEEE International Solid-State Circuits Conference (ISSCC). 2006, pp. 2340–2349 (Feb 2006)Google Scholar
  15. 15.
    Roberts, K.: Electronic dispersion compensation beyond 10 Gb/s. IEEE/LEOS Summer Top. Meet. 2007, 9–10 (2007)Google Scholar
  16. 16.
    Dedic, I.: 56Gs/s ADC: Enabling 100GbE. Optical Fiber Communication and the National Fiber Optic Engineers Conference (OFC/NFOEC). 2010, pp. 1–3 (Mar 2010)Google Scholar
  17. 17.
    Marco, D., Neuhoff, L.: The validity of the additive noise model for uniform Scalar quantizers. IEEE Trans. Inf. Theory 51(5), 1739–1755 (2005)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yuanwei Fan
    • 1
  • Jian Chen
    • 1
  • Yong Zhang
    • 1
  • Changyuan Yu
    • 2
  1. 1.School of InfoComm EngineeringNanjing University of Posts and TelecommunicationsNanjingChina
  2. 2.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations