Advertisement

Photonic Network Communications

, Volume 31, Issue 1, pp 36–47 | Cite as

Dynamic burst length controlling algorithm-based loss differentiation in OBS networks through shared FDL buffers

  • Yonggyu Lee
Article

Abstract

The FDL buffers can have only discrete delay values. Because of this discontinuity, in order to construct the FDL buffers, some parameters such as the offered load, the average data burst length, and the basic delay unit, of which the length of each FDL is consecutive multiples, should be considered. This means that if one or more parameters change, new FDL buffers are required. So, even when one or more parameters change, in order to minimize the effect of the change, a new service differentiation algorithm dynamically controlling data burst length based on a shared-type feed-forward FDL architecture is proposed in this paper. Various results show that the algorithm improves fairness between classes and significantly reduces the fluctuation of the number of delay lines for each class.

Keywords

OBS Optical burst switching Shared FDL Loss differentiation Dynamic burst length adjustment 

References

  1. 1.
    Qiao, C., Yoo, M.: Optical burst switching (OBS)—a new paradigm for an optical internet. J. High Speed Netw. 8(1), 69–84 (1999)Google Scholar
  2. 2.
    Cao, X., Li, J., Chen, Y., Qiao, C.: Assembling TCP/IP packets in optical burst switched networks. In: Proceedings of GLOBECOM, vol. 3, pp. 2808–2812 (2002)Google Scholar
  3. 3.
    Long, K., Tucker, R.S., Wang, C.: A new framework and burst assembly for IP DiffServ over optical burst switching networks. In: Proceedings of GLOBECOM, vol. 6, pp. 3159–3164 (2003)Google Scholar
  4. 4.
    Xiong, Y., Vandenhoute, M., Cankaya, H.C.: Control architecture in optical burst-switched WDM networks. IEEE J. Sel. Areas Commun. 18(10), 1838–1851 (2000)CrossRefGoogle Scholar
  5. 5.
    Turner, J.S.: Terabit burst switching. J. High Speed Netw. 8(1), 3–16 (1999)Google Scholar
  6. 6.
    Oh, S., Kim, Y., Yoo, M., Hong, H.H.: Survivability in the optical internet using the optical burst switch. ETRI J. 24(2), 117–130 (2002)CrossRefGoogle Scholar
  7. 7.
    Kim, S., Kim, N., Kang, M.: Contention resolution for optical burst switching networks using alternative routing. In: Proceedings of the IEEE ICC, vol. 5, pp. 2678–2681 (2002)Google Scholar
  8. 8.
    Lee, S.K., Sriram, K., Kim, H.S., Song, J.S.: Contention-based limited deflection routing in OBS networks. In: Proceedings of GLOBECOM, vol. 5, pp. 2633–2637 (2003)Google Scholar
  9. 9.
    Chen, Y., Hamdi, M., Tsang, D.H.K.: Proportional QoS over OBS networks. In: Proceedings of GLOBECOM, vol. 3, pp. 1510–1514 (2001)Google Scholar
  10. 10.
    Yoo, M., Qiao, C., Dixit, S.: Optical burst switching for service differentiation in the next-generation optical internet. IEEE Commun. Mag. 39(2), 98–104 (2001)CrossRefGoogle Scholar
  11. 11.
    Vokkarane, V.M., Jue, J.P.: Prioritized burst segmentation and composite burst-assembly techniques for QoS support in optical burst switched networks. IEEE J. Sel. Areas Commun. 21(7), 1198–1209 (2003)CrossRefGoogle Scholar
  12. 12.
    Loi, C., Liao, W., Yang, D.N.: Service differentiation in optical burst switched networks. In: Proceedings of GLOBECOM, vol. 3, pp. 2313–2317 (2002)Google Scholar
  13. 13.
    Liu, J., Ansari, N.: Forward resource reservation for QoS provisioning in OBS systems. In: Proceedings of GLOBECOM, vol. 3, pp. 2777–2781 (2002)Google Scholar
  14. 14.
    Zhang, Q., Vokkarane, V.M., Chen, B., Jue, J.P.: Early drop and wavelength grouping schemes for providing absolute QoS differentiation in optical burst-switched networks. In: Proceedings of GLOBECOM, vol. 5, pp. 2694–2698 (2003)Google Scholar
  15. 15.
    Pedro, P., Jordi, P., Miroslaw, K., Davide, C., Salvatore, S., Joesp, S.: A GMPLS/OBS network architecture enabling QoS-aware end-to-end burst transport. In: Proceedings of HPSR, pp. 64–69 (2011)Google Scholar
  16. 16.
    Pedro, P., Jordi, P., Davide, C., Miroslaw, K., Salvatore, S.: Optimized burst LSP design for absolute QoS guarantees in GMPLS-controlled OBS networks. J. Opt. Commun. Netw. 4(2), 66–77 (2012)CrossRefGoogle Scholar
  17. 17.
    Sunish, K.O.S., Shyam, D.C.V., Prasanth, P.M., Jayasree, V.K.: A statistical modeling of QoS in an optical burst switched network. In: Proceedings of IEEE CONECCT, pp. 1–6 (2013)Google Scholar
  18. 18.
    Behrang, S., Khalim, A.M., Shaowen, S., Abdallah, S.: Quality of service provisioning in metropolitan area networks using optical burst switching. In: Proceedings of WOCN, pp. 1–6 (2013)Google Scholar
  19. 19.
    Lee, Y., Kim, N., Kang, M.: Service differentiation scheme in OBS networks. Photonic Netw. Commun. 15(1), 67–75 (2008)CrossRefGoogle Scholar
  20. 20.
    Lee, Y., Choi, Y., Jung, B., Kang, M.: Service differentiation using shared fiber delay line bank in OBS networks. Photonic Netw. Commun. 20(3), 201–208 (2010)CrossRefGoogle Scholar
  21. 21.
    Yu, X., Li, J., Cao, X., Chen, Y., Qiao, C.: Traffic statistics and performance evaluation in optical burst switched networks. J. Lightwave Technol. 22(2), 2722–2738 (2004)CrossRefGoogle Scholar
  22. 22.
    Laevens, K.: Traffic characteristics inside optical burst-switched networks. In: Proceedings of SPIE, vol. 4847, pp. 137–148 (2002)Google Scholar
  23. 23.
    Geng, S., Li, G., Guo, Z.: A novel burst assembly algorithm for OBS network based on auto-search optimal assembly threshold. In: Proceedings of ICIST, pp. 729–733 (2013)Google Scholar
  24. 24.
    Jiang, X., Zhu, N., Yuan, L.: A novel burst assembly algorithm for OBS networks based on burst size and assembly time prediction. J. Comput. Inf. Syst. 9(2), 463–475 (2013)Google Scholar
  25. 25.
    Guan, A.H., Hu, F., Li, W.C.: A new composite assembly mechanism for supporting QoS in OBS networks. Optoelectron. Lett. 10(1), 55–58 (2014)CrossRefGoogle Scholar
  26. 26.
    Yoo, M., Qiao, C., Dixit, S.: QoS performance of optical burst switching in IP-over-WDM networks. IEEE J. Sel. Areas Commun. 18(10), 2062–2071 (2000)CrossRefGoogle Scholar
  27. 27.
    Zhang, T., Lu, K., Jue, J.P.: An analytical model for shared fiber-delay line buffers in asynchronous optical packet and burst switches. In: Proceedings of IEEE ICC, vol. 3, pp. 1636–1640 (2005)Google Scholar
  28. 28.
    Le Vu, H., Zukerman, M.: Blocking probability for priority classes in optical burst switching networks. IEEE Commun. Lett. 6(5), 214–216 (2002)CrossRefGoogle Scholar
  29. 29.
    Riverbed Modeler. http://www.riverbed.com/

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Chungbuk National UniversityCheongjuRepublic of Korea

Personalised recommendations