Advertisement

Photonic Network Communications

, Volume 31, Issue 2, pp 353–372 | Cite as

Chip-scale optical interconnects and optical data processing using silicon photonic devices

Invited paper
  • Jian Wang
Article

Abstract

Recent advances in the density and complexity of photonic integrated circuits have facilitated possible implementation of chip-scale optical communication systems. Chip-scale optical interconnects and optical data processing are two important functions to transmit and process signal in the optical domain. Silicon photonics offers a promising platform to enable chip-scale optical interconnects and optical data processing using silicon photonic devices. In this paper, we review our recent progress in the design, modeling, and fabrication of silicon photonic devices and their applications in chip-scale optical interconnects and optical data processing with advanced modulation formats. For chip-scale optical interconnects, we experimentally demonstrate digital signal transmissions in silicon microring and silicon vertical slot waveguide. Terabit chip-scale optical interconnect is demonstrated in the experiment. Also, we experimentally demonstrate analog signal transmissions in silicon microring and silicon photonic crystal nanocavity. For chip-scale optical data processing, we experimentally demonstrate all-optical wavelength conversion using a silicon waveguide, simultaneous polarization and wavelength demultiplexing using 2D grating coupler connected with microrings, two-mode (de)multiplexing using a tapered asymmetrical grating-assisted contra-directional coupler, and two-/three-mode (de)multiplexing using asymmetrical directional converter. In addition, we propose and simulate chip-scale optical data exchange, chip-scale high-base optical computing, and chip-scale optical coding/decoding by using nonlinear interactions in a silicon-organic hybrid slot waveguide. The obtained theoretical and experimental results of chip-scale optical interconnects and optical data processing indicate possible integration of optical communication functions on a monolithic chip.

Keywords

Optical interconnect Optical data processing Optical communications Advanced modulation formats Photonic integrated circuits Silicon photonics 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) under Grants 61222502, 11274131, and 61077051, the Program for New Century Excellent Talents in University (NCET-11-0182), the National Basic Research Program of China (973 Program) under Grant 2014CB340004, the Wuhan Science and Technology Plan Project under Grant 2014070404010201, the Fundamental Research Funds for the Central Universities (HUST) under Grants 2012YQ008 and 2013ZZGH003, and the seed project of Wuhan National Laboratory for Optoelectronics (WNLO). The authors would like to thank Chengcheng Gui, Qi Yang, Chao Li, Xi Xiao, Shaohua Yu, Jing Du, Zhonglai Zhang, Yong Zhang and Jinsong Xia for technical supports and helpful suggestions.

References

  1. 1.
    Winzer, P.J.: Modulation and multiplexing in optical communication systems. IEEE LEOS Newsl. 23, 4–10 (2009)Google Scholar
  2. 2.
    Salem, R., Foster, M.A., Turner, A.C., Geraghty, D.F., Lipson, M., Gaeta, A.L.: Signal regeneration using low-power four-wave mixing on silicon chip. Nat. Photon. 2, 35–38 (2008)CrossRefGoogle Scholar
  3. 3.
    Koos, C., Vorreau, P., Vallaitis, T., Dumon, P., Bogaerts, W., Baets, R., Esembeson, B., Biaggio, I., Michinobu, T., Diederich, F., Freude, W., Leuthold, J.: All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nat. Photon. 3, 216–219 (2009)CrossRefGoogle Scholar
  4. 4.
    Biberman, A., Lee, B.G., Turner-Foster, A.C., Foster, M.A., Lipson, M., Gaeta, A.L., Bergman, K.: Wavelength multicasting in silicon photonic nanowires. Opt. Express 18, 18047–18055 (2010)CrossRefGoogle Scholar
  5. 5.
    Leuthold, J., Koos, C., Freude, W.: Nonlinear silicon photonics. Nat. Photon. 4, 535–544 (2010)CrossRefGoogle Scholar
  6. 6.
    Oxenløwe, L.K., Ji, H., Galili, M., Pu, M., Hu, H., Mulvad, H.C.H., Yvind, K., Hvam, J.M., Clausen, A.T., Jeppesen, P.: Silicon photonics for signal processing of Tbit/s serial data signals. IEEE J. Sel. Top. Quantum Electron. 18, 996–1005 (2011)CrossRefGoogle Scholar
  7. 7.
    Hu, H., Ji, H., Galili, M., Pu, M., Peucheret, C., Mulvad, H.C.H., Yvind, K., Hvam, J.M., Jeppesen, P., Oxenløwe, L.K.: Ultra-high-speed wavelength conversion in a silicon photonic chip. Opt. Express 19, 19886–19894 (2011)CrossRefGoogle Scholar
  8. 8.
    Eggleton, B.J., Vo, T.D., Pant, R., Schr, J., Pelusi, M.D., Yong Choi, D., Madden, S.J., Luther-Davies, B.: Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides. Laser Photon. Rev. 6, 97–114 (2012)CrossRefGoogle Scholar
  9. 9.
    Adams, R., Spasojevic, M., Chagnon, M., Malekiha, M., Li, J., Plant, D.V., Chen, L.R.: Wavelength conversion of 28 GBaud 16-QAM signals based on four-wave mixing in a silicon nanowire. Opt. Express 22, 4083–4090 (2014)CrossRefGoogle Scholar
  10. 10.
    Miller, D.A.B.: Rationale and challenges for optical interconnects to electronic chips. Proc. IEEE 88, 728–749 (2000)CrossRefGoogle Scholar
  11. 11.
    Dong, P., Chen, Y.-K., Duan, G.-H., Neilson, D.T.: Silicon photonic devices and integrated circuits. Nanophotonics 3, 215–228 (2014)CrossRefGoogle Scholar
  12. 12.
    Dong, P., Liu, X., Chandrasekhar, S., Buhl, L.L., Aroca, R., Chen, Y.-K.: Monolithic silicon photonic integrated circuits for compact 100 Gbps coherent optical receivers and transmitters. IEEE J. Sel. Top. Quantum Electron. 20, 6100108 (2014)Google Scholar
  13. 13.
    Vlasov, Y., Green, W.M.J., Xia, F.: High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nat. Photon. 2, 242–246 (2008)CrossRefGoogle Scholar
  14. 14.
    Sherwood-Droz, N., Wang, H., Chen, L., Lee, B.G., Biberman, A., Bergman, K., Lipson, M.: Optical 4x4 hitless silicon router for optical networks-on-chip (NoC). Opt. Express 16, 15915–15922 (2008)CrossRefGoogle Scholar
  15. 15.
    Lindenmann, N., Balthasar, G., Hillerkuss, D., Schmogrow, R., Jordan, M., Leuthold, J., Freude, W., Koos, C.: Photonic wire bonding: a novel concept for chip-scale interconnects. Opt. Express 20, 17667–17677 (2012)CrossRefGoogle Scholar
  16. 16.
    Jalali, B., Fathpour, S.: Silicon photonics. J. Lightwave Technol. 24, 4600–4615 (2006)CrossRefGoogle Scholar
  17. 17.
    Barwicz, T., Byun, H., Gan, F., Holzwarth, C.W., Popovic, M.A., Rakich, P.T., Watts, M.R., Ippen, E.P., Kärtner, F.X., Smith, H.I., Orcutt, J.S., Ram, R.J., Stojanovic, V., Olubuyide, O.O., Hoyt, J.L., Spector, S., Geis, M., Grein, M., Lyszczarz, T., Yoon, J.U.: Silicon photonics for compact, energy-efficient interconnects. J. Opt. Netw. 6, 63–73 (2007)CrossRefGoogle Scholar
  18. 18.
    Lipson, M.: Guiding, modulation, and emitting light on silicon challenges and opportunities. J. Lightwave Technol. 23, 4222–4238 (2012)CrossRefGoogle Scholar
  19. 19.
    Zhou, Z., Tu, Z., Li, T., Wang, X.: Silicon photonics for advanced optical interconnects. J. Lightwave Technol. 33, 928–933 (2014)CrossRefGoogle Scholar
  20. 20.
    Winzer, P.J., Essiambre, R.: Advanced modulation formats for high-capacity optical transport networks. J. Lightwave Technol. 24, 4711–4728 (2006)CrossRefGoogle Scholar
  21. 21.
    Winzer, P.J.: High-spectral-efficiency optical modulation formats. J. Lightwave Technol. 30, 3824–3835 (2012)CrossRefGoogle Scholar
  22. 22.
    Gnauck, A.H., Winzer, P.J., Chandrasekhar, S., Liu, X., Zhu, B., Peckham, D.W.: Spectrally efficient long-haul WDM transmission using 224-Gb/s polarization-multiplexed 16-QAM. J. Lightwave Technol. 29, 373–377 (2011)CrossRefGoogle Scholar
  23. 23.
    Qian, D., Huang, M.-F., Ip, E., Huang, Y.-K., Shao, Y., Hu, J., Wang, T.: High capacity/spectral efficiency 101.7-Tb/s WDM transmission using PDM-128QAM-OFDM over 165-km SSMF within C- and L-bands. J. Lightwave Technol. 30, 1540–1548 (2012)CrossRefGoogle Scholar
  24. 24.
    Capmany, J., Mora, J., Gasulla, I., Sancho, J., Lloret, J., Sales, S.: Microwave photonic signal processing. J. Lightwave Technol. 31, 571–586 (2013)CrossRefGoogle Scholar
  25. 25.
    Marpaung, D., Roeloffzen, C., Heideman, R., Leinse, A., Sales, S., Capmany, J.: Integrated microwave photonics. Laser Photon. Rev. 7, 506–538 (2013)CrossRefGoogle Scholar
  26. 26.
    Huang, H., Yue, Y., Zhang, L., Chase, C., Parekh, D., Sedgwick, F., Wu, M.C., Chang-Hasnain, C.J., Tur, M., Willner, A.E.: Analog signal transmission in a high-contrast-gratings-based hollow-core-waveguide. J. Lightwave Technol. 30, 3640–3646 (2012)CrossRefGoogle Scholar
  27. 27.
    Wang, J.: Nanophotonic devices for on-chip optical signal transmission and processing. In: Proceedings of ICOCN2014, paper M23.5 (2014)Google Scholar
  28. 28.
    Wang, J.: Recent progress in on-chip photonic signal processing with advanced modulation formats. In: Proceedings of APC2014, paper SM4E (2014)Google Scholar
  29. 29.
    Wang, J.: Integrated photonics for on-chip signaling. SPIE Newsroom. doi: 10.1117/2.1201501.005654 (2015)
  30. 30.
    Gui, C.C., Li, C., Yang, Q., Wang, J.: Experimental demonstration of low penalty OFDM/OQAM 64/128/256/512-QAM data transmission in a silicon microring resonator. In: Proceedings of ACP2014, paper ATh4D.1 (2014)Google Scholar
  31. 31.
    Gui, C.C., Li, C., Yang, Q., Wang, J.: Experimental demonstration of silicon vertical slot waveguides for ultrahigh-bandwidth 1.8-Tbit/s (161 WDM 11.2-Gbit/s OFDM 16-QAM) data transmission. In: Proceedings of OECC2014, paper TUPS1-37 (2014)Google Scholar
  32. 32.
    Gui, C.C., Li, C., Yang, Q., Wang, J.: Demonstration of terabit-scale data transmission in silicon vertical slot waveguides. Opt. Express 23, 9736–9745 (2015)CrossRefGoogle Scholar
  33. 33.
    Du, J., Gui, C.C., Li, C., Yang, Q., Wang, J.: Design and fabrication of hybrid SPP waveguides for ultrahigh-bandwidth low-penalty 1.8-Tbit/s data transmission (161 WDM 11.2-Gbit/s OFDM 16-QAM). In: Proceedings of CLEO2014, paper JTh2A.35 (2014)Google Scholar
  34. 34.
    Du, J., Wang, J.: Experimental performance evaluation of analog signal transmission in a silicon microring resonator. Opt. Lett. 40, 1181–1184 (2015)CrossRefGoogle Scholar
  35. 35.
    Gui, C.C., Zhang, Y., Xia, J., Wang, J.: Experimental performance evaluation of analog signal transmission in a photonic crystal ring resonator. In: Proceedings of APC2014, paper IT2A.5 (2014)Google Scholar
  36. 36.
    Gui, C.C., Zhang, Y., Du, J., Xia, J.S., Wang, J.: Experimental demonstration of analog signal transmission in a silicon photonic crystal L3 resonator. Opt. Express 23, 13916–13923 (2015)CrossRefGoogle Scholar
  37. 37.
    Gui, C.C., Li, C., Xiao, X., Yang, Q., Wang, J.: Wavelength conversion of OFDM 16-/32-/64-/128-QAM signals using four-wave mixing in a silicon waveguide. In: Proceedings of OECC2014, paper MO1C-3 (2014)Google Scholar
  38. 38.
    Li, C., Gui, C.C., Xiao, X., Yang, Q., Yu, S., Wang, J.: On-chip all-optical wavelength conversion of multicarrier, multilevel modulation (OFDM m-QAM) signals using a silicon waveguide. Opt. Lett. 39, 4583–4586 (2014)CrossRefGoogle Scholar
  39. 39.
    Wang, J., Gui, C.C., Li, C., Yang, Q.: On-chip demultiplexing of polarization and wavelength multiplexed OFDM/OQAM 64/128-QAM signals using silicon 2D grating coupler and microring resonators. In: Proceedings of OFC2014, paper Th2A.48 (2014)Google Scholar
  40. 40.
    Gui, C.C., Wang, J., Zhang, Z., Gao, D., Li, C., Yang, Q.: Experimental demonstration of on-chip silicon two/three mode (de)multiplexer using OFDM 64/128/256-QAM signals. Proceedings of CLEO2014, paper JTu4A.105 (2014)Google Scholar
  41. 41.
    Gui, C.C., Wang, J.: Low-power (\(<\)10 mW) ultrahigh-speed optical data exchange of 2.56-Tbit/s 16-QAM and 3.84-Tbit/s 64-QAM signals using parametric depletion in a silicon-organic hybrid slot waveguide. In: Proceedings of APC2014, paper JT3A.16 (2014)Google Scholar
  42. 42.
    Gui, C.C., Wang, J.: Optical data exchange of m-QAM signals using a silicon-organic hybrid slot waveguide: proposal and simulation. Opt. Express 22, 24796–24807 (2014)CrossRefGoogle Scholar
  43. 43.
    Gui, C.C., Wang, J., Zhang, Z., Du, J.: Silicon-organic hybrid slot waveguide based three-input multicasted 160-Gbit/s optical hexadecimal addition/subtraction using multi-FWM and m-ary PSK. In: Proceedings of IPC2013, paper WB2.2 (2013)Google Scholar
  44. 44.
    Gui, C.C., Wang, J.: Silicon-organic hybrid slot waveguide based three-input multicasted optical hexadecimal addition/subtraction. Sci. Rep. 4, 7491 (2014)CrossRefGoogle Scholar
  45. 45.
    Gui, C.C., Wang, J.: Optical hexadecimal coding/decoding of 40-Gbaud/s 16-QAM signals using cross-phase modulation in a silicon-organic hybrid slot waveguide. In: Proceedings of APC2014, paper JT3A.5 (2014)Google Scholar
  46. 46.
    Ding, Y., Ou, H., Peucheret, C.: Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals. Opt. Lett. 38, 2732–2734 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations