Skip to main content
Log in

Chip-scale optical interconnects and optical data processing using silicon photonic devices

Invited paper

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Recent advances in the density and complexity of photonic integrated circuits have facilitated possible implementation of chip-scale optical communication systems. Chip-scale optical interconnects and optical data processing are two important functions to transmit and process signal in the optical domain. Silicon photonics offers a promising platform to enable chip-scale optical interconnects and optical data processing using silicon photonic devices. In this paper, we review our recent progress in the design, modeling, and fabrication of silicon photonic devices and their applications in chip-scale optical interconnects and optical data processing with advanced modulation formats. For chip-scale optical interconnects, we experimentally demonstrate digital signal transmissions in silicon microring and silicon vertical slot waveguide. Terabit chip-scale optical interconnect is demonstrated in the experiment. Also, we experimentally demonstrate analog signal transmissions in silicon microring and silicon photonic crystal nanocavity. For chip-scale optical data processing, we experimentally demonstrate all-optical wavelength conversion using a silicon waveguide, simultaneous polarization and wavelength demultiplexing using 2D grating coupler connected with microrings, two-mode (de)multiplexing using a tapered asymmetrical grating-assisted contra-directional coupler, and two-/three-mode (de)multiplexing using asymmetrical directional converter. In addition, we propose and simulate chip-scale optical data exchange, chip-scale high-base optical computing, and chip-scale optical coding/decoding by using nonlinear interactions in a silicon-organic hybrid slot waveguide. The obtained theoretical and experimental results of chip-scale optical interconnects and optical data processing indicate possible integration of optical communication functions on a monolithic chip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. Winzer, P.J.: Modulation and multiplexing in optical communication systems. IEEE LEOS Newsl. 23, 4–10 (2009)

    Google Scholar 

  2. Salem, R., Foster, M.A., Turner, A.C., Geraghty, D.F., Lipson, M., Gaeta, A.L.: Signal regeneration using low-power four-wave mixing on silicon chip. Nat. Photon. 2, 35–38 (2008)

    Article  Google Scholar 

  3. Koos, C., Vorreau, P., Vallaitis, T., Dumon, P., Bogaerts, W., Baets, R., Esembeson, B., Biaggio, I., Michinobu, T., Diederich, F., Freude, W., Leuthold, J.: All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nat. Photon. 3, 216–219 (2009)

    Article  Google Scholar 

  4. Biberman, A., Lee, B.G., Turner-Foster, A.C., Foster, M.A., Lipson, M., Gaeta, A.L., Bergman, K.: Wavelength multicasting in silicon photonic nanowires. Opt. Express 18, 18047–18055 (2010)

    Article  Google Scholar 

  5. Leuthold, J., Koos, C., Freude, W.: Nonlinear silicon photonics. Nat. Photon. 4, 535–544 (2010)

    Article  Google Scholar 

  6. Oxenløwe, L.K., Ji, H., Galili, M., Pu, M., Hu, H., Mulvad, H.C.H., Yvind, K., Hvam, J.M., Clausen, A.T., Jeppesen, P.: Silicon photonics for signal processing of Tbit/s serial data signals. IEEE J. Sel. Top. Quantum Electron. 18, 996–1005 (2011)

    Article  Google Scholar 

  7. Hu, H., Ji, H., Galili, M., Pu, M., Peucheret, C., Mulvad, H.C.H., Yvind, K., Hvam, J.M., Jeppesen, P., Oxenløwe, L.K.: Ultra-high-speed wavelength conversion in a silicon photonic chip. Opt. Express 19, 19886–19894 (2011)

    Article  Google Scholar 

  8. Eggleton, B.J., Vo, T.D., Pant, R., Schr, J., Pelusi, M.D., Yong Choi, D., Madden, S.J., Luther-Davies, B.: Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides. Laser Photon. Rev. 6, 97–114 (2012)

    Article  Google Scholar 

  9. Adams, R., Spasojevic, M., Chagnon, M., Malekiha, M., Li, J., Plant, D.V., Chen, L.R.: Wavelength conversion of 28 GBaud 16-QAM signals based on four-wave mixing in a silicon nanowire. Opt. Express 22, 4083–4090 (2014)

    Article  Google Scholar 

  10. Miller, D.A.B.: Rationale and challenges for optical interconnects to electronic chips. Proc. IEEE 88, 728–749 (2000)

    Article  Google Scholar 

  11. Dong, P., Chen, Y.-K., Duan, G.-H., Neilson, D.T.: Silicon photonic devices and integrated circuits. Nanophotonics 3, 215–228 (2014)

    Article  Google Scholar 

  12. Dong, P., Liu, X., Chandrasekhar, S., Buhl, L.L., Aroca, R., Chen, Y.-K.: Monolithic silicon photonic integrated circuits for compact 100 Gbps coherent optical receivers and transmitters. IEEE J. Sel. Top. Quantum Electron. 20, 6100108 (2014)

    Google Scholar 

  13. Vlasov, Y., Green, W.M.J., Xia, F.: High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nat. Photon. 2, 242–246 (2008)

    Article  Google Scholar 

  14. Sherwood-Droz, N., Wang, H., Chen, L., Lee, B.G., Biberman, A., Bergman, K., Lipson, M.: Optical 4x4 hitless silicon router for optical networks-on-chip (NoC). Opt. Express 16, 15915–15922 (2008)

    Article  Google Scholar 

  15. Lindenmann, N., Balthasar, G., Hillerkuss, D., Schmogrow, R., Jordan, M., Leuthold, J., Freude, W., Koos, C.: Photonic wire bonding: a novel concept for chip-scale interconnects. Opt. Express 20, 17667–17677 (2012)

    Article  Google Scholar 

  16. Jalali, B., Fathpour, S.: Silicon photonics. J. Lightwave Technol. 24, 4600–4615 (2006)

    Article  Google Scholar 

  17. Barwicz, T., Byun, H., Gan, F., Holzwarth, C.W., Popovic, M.A., Rakich, P.T., Watts, M.R., Ippen, E.P., Kärtner, F.X., Smith, H.I., Orcutt, J.S., Ram, R.J., Stojanovic, V., Olubuyide, O.O., Hoyt, J.L., Spector, S., Geis, M., Grein, M., Lyszczarz, T., Yoon, J.U.: Silicon photonics for compact, energy-efficient interconnects. J. Opt. Netw. 6, 63–73 (2007)

    Article  Google Scholar 

  18. Lipson, M.: Guiding, modulation, and emitting light on silicon challenges and opportunities. J. Lightwave Technol. 23, 4222–4238 (2012)

    Article  Google Scholar 

  19. Zhou, Z., Tu, Z., Li, T., Wang, X.: Silicon photonics for advanced optical interconnects. J. Lightwave Technol. 33, 928–933 (2014)

    Article  Google Scholar 

  20. Winzer, P.J., Essiambre, R.: Advanced modulation formats for high-capacity optical transport networks. J. Lightwave Technol. 24, 4711–4728 (2006)

    Article  Google Scholar 

  21. Winzer, P.J.: High-spectral-efficiency optical modulation formats. J. Lightwave Technol. 30, 3824–3835 (2012)

    Article  Google Scholar 

  22. Gnauck, A.H., Winzer, P.J., Chandrasekhar, S., Liu, X., Zhu, B., Peckham, D.W.: Spectrally efficient long-haul WDM transmission using 224-Gb/s polarization-multiplexed 16-QAM. J. Lightwave Technol. 29, 373–377 (2011)

    Article  Google Scholar 

  23. Qian, D., Huang, M.-F., Ip, E., Huang, Y.-K., Shao, Y., Hu, J., Wang, T.: High capacity/spectral efficiency 101.7-Tb/s WDM transmission using PDM-128QAM-OFDM over 165-km SSMF within C- and L-bands. J. Lightwave Technol. 30, 1540–1548 (2012)

    Article  Google Scholar 

  24. Capmany, J., Mora, J., Gasulla, I., Sancho, J., Lloret, J., Sales, S.: Microwave photonic signal processing. J. Lightwave Technol. 31, 571–586 (2013)

    Article  Google Scholar 

  25. Marpaung, D., Roeloffzen, C., Heideman, R., Leinse, A., Sales, S., Capmany, J.: Integrated microwave photonics. Laser Photon. Rev. 7, 506–538 (2013)

    Article  Google Scholar 

  26. Huang, H., Yue, Y., Zhang, L., Chase, C., Parekh, D., Sedgwick, F., Wu, M.C., Chang-Hasnain, C.J., Tur, M., Willner, A.E.: Analog signal transmission in a high-contrast-gratings-based hollow-core-waveguide. J. Lightwave Technol. 30, 3640–3646 (2012)

    Article  Google Scholar 

  27. Wang, J.: Nanophotonic devices for on-chip optical signal transmission and processing. In: Proceedings of ICOCN2014, paper M23.5 (2014)

  28. Wang, J.: Recent progress in on-chip photonic signal processing with advanced modulation formats. In: Proceedings of APC2014, paper SM4E (2014)

  29. Wang, J.: Integrated photonics for on-chip signaling. SPIE Newsroom. doi:10.1117/2.1201501.005654 (2015)

  30. Gui, C.C., Li, C., Yang, Q., Wang, J.: Experimental demonstration of low penalty OFDM/OQAM 64/128/256/512-QAM data transmission in a silicon microring resonator. In: Proceedings of ACP2014, paper ATh4D.1 (2014)

  31. Gui, C.C., Li, C., Yang, Q., Wang, J.: Experimental demonstration of silicon vertical slot waveguides for ultrahigh-bandwidth 1.8-Tbit/s (161 WDM 11.2-Gbit/s OFDM 16-QAM) data transmission. In: Proceedings of OECC2014, paper TUPS1-37 (2014)

  32. Gui, C.C., Li, C., Yang, Q., Wang, J.: Demonstration of terabit-scale data transmission in silicon vertical slot waveguides. Opt. Express 23, 9736–9745 (2015)

    Article  Google Scholar 

  33. Du, J., Gui, C.C., Li, C., Yang, Q., Wang, J.: Design and fabrication of hybrid SPP waveguides for ultrahigh-bandwidth low-penalty 1.8-Tbit/s data transmission (161 WDM 11.2-Gbit/s OFDM 16-QAM). In: Proceedings of CLEO2014, paper JTh2A.35 (2014)

  34. Du, J., Wang, J.: Experimental performance evaluation of analog signal transmission in a silicon microring resonator. Opt. Lett. 40, 1181–1184 (2015)

    Article  Google Scholar 

  35. Gui, C.C., Zhang, Y., Xia, J., Wang, J.: Experimental performance evaluation of analog signal transmission in a photonic crystal ring resonator. In: Proceedings of APC2014, paper IT2A.5 (2014)

  36. Gui, C.C., Zhang, Y., Du, J., Xia, J.S., Wang, J.: Experimental demonstration of analog signal transmission in a silicon photonic crystal L3 resonator. Opt. Express 23, 13916–13923 (2015)

    Article  Google Scholar 

  37. Gui, C.C., Li, C., Xiao, X., Yang, Q., Wang, J.: Wavelength conversion of OFDM 16-/32-/64-/128-QAM signals using four-wave mixing in a silicon waveguide. In: Proceedings of OECC2014, paper MO1C-3 (2014)

  38. Li, C., Gui, C.C., Xiao, X., Yang, Q., Yu, S., Wang, J.: On-chip all-optical wavelength conversion of multicarrier, multilevel modulation (OFDM m-QAM) signals using a silicon waveguide. Opt. Lett. 39, 4583–4586 (2014)

    Article  Google Scholar 

  39. Wang, J., Gui, C.C., Li, C., Yang, Q.: On-chip demultiplexing of polarization and wavelength multiplexed OFDM/OQAM 64/128-QAM signals using silicon 2D grating coupler and microring resonators. In: Proceedings of OFC2014, paper Th2A.48 (2014)

  40. Gui, C.C., Wang, J., Zhang, Z., Gao, D., Li, C., Yang, Q.: Experimental demonstration of on-chip silicon two/three mode (de)multiplexer using OFDM 64/128/256-QAM signals. Proceedings of CLEO2014, paper JTu4A.105 (2014)

  41. Gui, C.C., Wang, J.: Low-power (\(<\)10 mW) ultrahigh-speed optical data exchange of 2.56-Tbit/s 16-QAM and 3.84-Tbit/s 64-QAM signals using parametric depletion in a silicon-organic hybrid slot waveguide. In: Proceedings of APC2014, paper JT3A.16 (2014)

  42. Gui, C.C., Wang, J.: Optical data exchange of m-QAM signals using a silicon-organic hybrid slot waveguide: proposal and simulation. Opt. Express 22, 24796–24807 (2014)

    Article  Google Scholar 

  43. Gui, C.C., Wang, J., Zhang, Z., Du, J.: Silicon-organic hybrid slot waveguide based three-input multicasted 160-Gbit/s optical hexadecimal addition/subtraction using multi-FWM and m-ary PSK. In: Proceedings of IPC2013, paper WB2.2 (2013)

  44. Gui, C.C., Wang, J.: Silicon-organic hybrid slot waveguide based three-input multicasted optical hexadecimal addition/subtraction. Sci. Rep. 4, 7491 (2014)

    Article  Google Scholar 

  45. Gui, C.C., Wang, J.: Optical hexadecimal coding/decoding of 40-Gbaud/s 16-QAM signals using cross-phase modulation in a silicon-organic hybrid slot waveguide. In: Proceedings of APC2014, paper JT3A.5 (2014)

  46. Ding, Y., Ou, H., Peucheret, C.: Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals. Opt. Lett. 38, 2732–2734 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) under Grants 61222502, 11274131, and 61077051, the Program for New Century Excellent Talents in University (NCET-11-0182), the National Basic Research Program of China (973 Program) under Grant 2014CB340004, the Wuhan Science and Technology Plan Project under Grant 2014070404010201, the Fundamental Research Funds for the Central Universities (HUST) under Grants 2012YQ008 and 2013ZZGH003, and the seed project of Wuhan National Laboratory for Optoelectronics (WNLO). The authors would like to thank Chengcheng Gui, Qi Yang, Chao Li, Xi Xiao, Shaohua Yu, Jing Du, Zhonglai Zhang, Yong Zhang and Jinsong Xia for technical supports and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J. Chip-scale optical interconnects and optical data processing using silicon photonic devices. Photon Netw Commun 31, 353–372 (2016). https://doi.org/10.1007/s11107-015-0525-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-015-0525-z

Keywords

Navigation