Photonic Network Communications

, Volume 30, Issue 2, pp 309–320 | Cite as

Bandwidth-adaptability protection with content connectivity against disaster in elastic optical datacenter networks

  • Chen Ma
  • Jie Zhang
  • Yongli Zhao
  • Zilian Jin
  • Yachao Shi
  • Yang Wang
  • Meng Yin


Due to disasters in communication networks, the risk of large-scale failure is on the rise. Hence, how to recover failed requests caused by disaster with minimum spectrum resources is an important issue for network operators. In the past years, elastic optical networks provide a new way to reduce the spectrum consumption in optical networks. Based on the technology, bandwidth-adaptability protection with content connectivity (BCP) is proposed in this study. We first introduce the concept of BCP, which includes path calculation and spectrum allocation. For path calculation, working path and backup path employ links in different shared risk link groups to avoid disaster failure in optical networks. For spectrum allocation, modulation format of backup path is adjusted according to the requirement of point-to-content requests to reduce the spectrum consumption. Then, an integer linear program and two heuristic algorithms (BCP_KSP, BCP_MSP) are proposed for static and dynamic traffic scenarios, respectively. Simulation results show that, compared to traditional method without bandwidth adaptability, BCP has better performance in terms of spectrum resource utilization and blocking probability.


Content connectivity protection  Optical networks survivability Disaster failure  Bandwidth adaptability 



This work has been supported in part by NSFC project (61201154, 60932004), RFDP Project (20120005120019), Ministry of Education-China Mobile Research Foundation (MCM130132), Fund of State Key Laboratory of Information Photonics and Optical Communications (BUPT), and Chinese Scholarship Council (CSC).


  1. 1.
    Cisco White Paper. Cisco visual networking index: forecast and methodology, 2014–2019 (2015)Google Scholar
  2. 2.
    Laoutaris, N., Sirvianos, M., Yang, X., Rodriguez, P.: Inter-datacenter bulk transfer with NetSticher. In: Proceeding of SIGCOMM, New York, pp. 74–85 (2011)Google Scholar
  3. 3.
    Takara H., Sano A., Kobayashi T., Kubota H., Kawakami H., et al.: 1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency. In: Proceeding of ECOC, Postdeadline Paper, Th.3.C.1, Amsterdam (2012)Google Scholar
  4. 4.
    Rahnamay-Naeini, M., Pezoa, J., Azar, G., Ghani, N., Hayat, M.: Modeling stochastic correlated network failures and assessing their effects on reliability. In Proceeding of IEEE ICC, Kyoto (2010)Google Scholar
  5. 5.
    Kwasinski, A., Weaver, W.W., Chapman, P.L., Krein, P.T.: Telecommunications power plant damage assessment for Hurricane Katrina—site survey and follow-up results. IEEE Syst. J. 3(3), 277–287 (2009)CrossRefGoogle Scholar
  6. 6.
    Adachi, T., Ishiyama, Y., Asakura, Y., Nakamura, K.: The restoration of telecom power damages by the Great East Japan Earthquake. In: Proceeding of INTELEC, Amsterdam (2011)Google Scholar
  7. 7.
    Huang, S., GUo, B., Li, X., Zhang, J., Zhao, Y., Gu, W.: Pre-configured polyhedron based protection against multi-link failure in optical mesh networks. Opt Express 22(3), 2386–2402 (2013)CrossRefGoogle Scholar
  8. 8.
    Ma C., Zhang J., Zhao Y., Jin Z., Yuan J., Li X., Huang S., Gu W.: Pre-configured cube (p-Cube): optimal protection structure against simultaneous dual-link failure in multi-dimensional node based optical networks. In: Proceedings of ACP, post-deadline paper, AF2C.6, Beijing (2013)Google Scholar
  9. 9.
    Ma, C., Zhang, J., Zhao, Y., Yuan, J., Jin, Z., Li, X., Huang, S., Gu, W.: Pre-configured prism (p-Prism) method against simultaneous dual-link failure in optical networks. Opt. Fiber Technol. 20(5), 443–452 (2014)CrossRefGoogle Scholar
  10. 10.
    Neumayer, S., Zussman, G., Cohen, R., Modiano, E.: Assessing the vulnerability of the fiber infrastructure to disaster. IEEE/ACM Trans. Netw. 19(6), 1610–1623 (2011)CrossRefGoogle Scholar
  11. 11.
    Liu, Y., Guo, L., Yu, C., Yu, Y., Wang, X.: Planning of survivable long-reach passive optical network (LR-PON) against single shared-risk link group (SRLG) failure. Opt. Switch. Netw. 11, 167–176 (2014)CrossRefGoogle Scholar
  12. 12.
    Gao, C., Zhu, Y., Jue, J.P.: SRLG-aware topology aggregation for survivable multi-domain optical networks. IEEE/OSA J. Opt. Commun. Netw. 5(11), 1145–1156 (2013)CrossRefGoogle Scholar
  13. 13.
    Yang, R.: Consideration and suggestions on improvement of communication network disaster countermeasures after the Wenchuan earthquake. IEEE Commun. Mag. 49(1), 44–47 (2011)CrossRefGoogle Scholar
  14. 14.
    Habib, M.F., Tornatore, M., Leenheer, M.D., Dikbiyik, F., Mukherjee, B.: Design of disaster-resilient optical datacenter networks. J. Lightwave Technol. 30(16), 2563–2573 (2012)CrossRefGoogle Scholar
  15. 15.
    Habib, M.F., Tornatore, M., Dikbiyik, F., Mukherjee, B.: Disaster survivability in optical communication networks. Comput. Commun. 36, 630–644 (2013)CrossRefGoogle Scholar
  16. 16.
    Jain S., Kumar A., Mandal S., Ong J., Poutievski L., Singh A., Venkata S., Wanderer J., Zhou J., Zhu M., Zolla, J. : B4: experience with a globally-deployed software defined WAN. In: Proceeding of SIGCOMM, pp. 3–14. New York (2013)Google Scholar
  17. 17.
    Habib M.F., Tornatore M., Mukherjee B.: Fault-tolerant virtual network mapping to provide content connectivity in optical networks. In Proceeding of OFC, OTh3E.4, Anaheim (2013)Google Scholar
  18. 18.
    Yang H., Zhao Y., Zhang J., Wang S., Gu W., Lin Y., Lee Y.: Cross stratum optimization of application and network resource based on global load balancing strategy in dynamic optical networks. In: Proceeding of OFC/NFOEC, JTH2A.38, Los Angeles (2012)Google Scholar
  19. 19.
    Jinno, M., Takara, H., Kozicki, B., Tsukishima, Y., Sone, Yi, Matsuoka, S.: Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies. IEEE Commun. Mag. 47(11), 66–73 (2009)CrossRefGoogle Scholar
  20. 20.
    Jinno, M., Ohara, T., Sone, Y., Hirano, A., Ishida, O., Tomizawa, M.: Elastic and adaptive optical networks: possible adoption scenarios and future standardization aspects. IEEE Commun. Mag. 49(10), 164–172 (2011)CrossRefGoogle Scholar
  21. 21.
    Jinno, M., Kozicki, B., Takara, H., Watanabe, A., Sone, Y., Tanaka, T., Hirano, A.: Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network. IEEE Commun. Mag. 48(8), 138–145 (2010)CrossRefGoogle Scholar
  22. 22.
    Sone, Y., Watanabe, A., Imajuku, W., Tsukishima, Y., Kozicki, B., Takara, H., Jinno, M.: Bandwidth squeezed restoration in spectrum-sliced elastic optical path networks (SLICE). IEEE/OSA J. Opt. Commun. Netw. 3(3), 223–233 (2011)CrossRefGoogle Scholar
  23. 23.
    Sone, Y., Watanabe, A., Imajuku, W., Tsukishima, Y., Kozicki, B., Takara, H., Jinno, M.: Highly survivable restoration scheme employing optical bandwidth squeezing in spectrum-sliced elastic optical path (SLICE) network. In Proceedings of OFC/NFOEC, OThO2. San Diego (2009)Google Scholar
  24. 24.
    Wang Y., Cao X., Pan, Y.: A study of the routing and spectrum allocation in spectrum-sliced elastic optical path networks. In Proceedings of IEEE INFOCOM, pp. 1503–1511, Shang Hai (2011)Google Scholar
  25. 25.
    Wang, X., Wang, L., Hua, N., Zhang, H., Zheng, X.: Dynamic routing and spectrum assignment in flexible optical path networks. In Proceedings of OFC/NFOEC, JWA55. Los Angeles (2011)Google Scholar
  26. 26.
    Wang, X., Huang, N., Zheng, X.: Dynamic routing and spectrum assignment in spectrum-flexible transparent optical networks. IEEE/OSA J. Opt. Commun. Netw. 4(8), 603–613 (2012)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Chen Ma
    • 1
  • Jie Zhang
    • 1
  • Yongli Zhao
    • 1
  • Zilian Jin
    • 1
  • Yachao Shi
    • 1
  • Yang Wang
    • 2
  • Meng Yin
    • 3
  1. 1.State Key Laboratory of Information Photonics and Optical CommunicationsBeijing University of Posts and TelecommunicationsBeijingPeople’s Republic of China
  2. 2.China Electric Power Research InstituteBeijingPeople’s Republic of China
  3. 3.China Mobile Group Design Institute Co., Ltd. Beijing BranchBeijingPeople’s Republic of China

Personalised recommendations