Photonic Network Communications

, Volume 30, Issue 2, pp 167–177 | Cite as

Erlangian approximation to finite time probability of blocking time of multi-class OBS nodes

  • Shengda Tang
  • Liansheng Tan


In an optical burst switching (OBS) network, the blocking time, representing the time interval during which the channel is occupied for a given class of incoming burst, is a key metric for performance evaluation and traffic shaping. In this paper, we study a horizon-based single-channel multi-class OBS node, for which the multiple traffic classes are differentiated using different offset time of each class. By assuming Poisson burst arrivals and phase-type distributed burst lengths and using the theory of Multi-layer stochastic fluid model, we obtain the Erlangian approximation for the finite time probability of the blocking time for a given class of burst in an OBS node. We further propose an explicit algorithm and procedure to calculate the Erlangian approximation. Numerical results are provided to illustrate the accuracy and the speed of convergence of the proposed method.


Optical burst switching (OBS)  Erlangian approximation  Multi-layer stochastic fluid model (MLSFM) Blocking time 


  1. 1.
    Yoo, M., Qiao, C.: Supporting multiple classes of services in IP over WDM networks. In: Global Telecommunications Conference, 1999 (GLOBECOM’99), vol. 1B, pp. 1023–1027 (1999)Google Scholar
  2. 2.
    Barakat, N., Sargent, E.: An accurate model for evaluating blocking probabilities in multi-class OBS systems. IEEE Commun. Lett. 8(2), 119–121 (2004)CrossRefGoogle Scholar
  3. 3.
    Hernandez, J.A., Aracil, J., de Pedro, L., Reviriego, P.: Analysis of blocking probability of data bursts with continuous-time variable offsets in single-wavelength OBS switches. J. Lightwave Technol. 26(12), 1559–1568 (2008)CrossRefGoogle Scholar
  4. 4.
    Kaheel, A., Alnuweiri, H., Gebali, F.: A new analytical model for computing blocking probability in optical burst switching networks. IEEE J. Sel. Areas Commun. 24(12), 120–128 (2006)CrossRefGoogle Scholar
  5. 5.
    Kankaya, H.E., Akar, N.: Exact analysis of offset-based service differentiation in single-channel multi-class OBS. IEEE Commun. Lett. 13(2), 148–150 (2009)CrossRefGoogle Scholar
  6. 6.
    Vu, H.L., Zukerman, M.: Blocking probability for priority classes in optical burst switching networks. IEEE Commun. Lett. 6(5), 214–216 (2002)CrossRefGoogle Scholar
  7. 7.
    Yazici, M. A., Akar, N.: Analysis of continuous feedback markov fluid queues and its applications to modeling optical burst switching. In: Proceedings of the 2013 25th International Teletraffic Congress (ITC) (2013)Google Scholar
  8. 8.
    Morato, D., Izal, M., Aracil, J., Magana, E., Miqueleiz, J.: Blocking time analysis of OBS routers with arbitrary burst size distribution. In: IEEE Global Telecommunications Conference, 2003 (GLOBECOM ’03), vol. 5, pp. 2488–2492 (2003)Google Scholar
  9. 9.
    Morato, D., Aracil, J., Hernandez, J.A., Garcia-Dorado, J.L.: On the blocking time distribution of core OBS switches. Photonic Netw. Commun. 18(3), 314–322 (2009)CrossRefGoogle Scholar
  10. 10.
    Anick, D., Mitra, D., Sondhi, M.M.: Stochastic theory of data handling system with multiple sources. Bell Syst. Tech. J. 61(8), 1871–1894 (1982)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Elwalid, A., Mitra, D.: Analysis and design of rate-based congestion control of high-speed networks, I: stochastic uid models, access regulation. Queueing Syst. 9(1–2), 29–63 (1991)CrossRefMATHGoogle Scholar
  12. 12.
    Foreest, N.D., Mandjes, M., Scheinhardt, W.: Analysis of a feedback fluid model for heterogeneous TCP sources. Stoch. Models 19(3), 299–324 (2003)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    O’Reilly, M.M., Palmowski, Z.: Loss rates for stochastic fluid models. Perform. Eval. 70(9), 593–606 (2013)CrossRefGoogle Scholar
  14. 14.
    Badescu, A.L., Breuer, L., Soares, A.D.S., Latouche, A.G., Remiche, M.A., Stanford, D.: Risk processes analyzed as fluid queues. Scand. Actuar. J. 2005(2), 127–141 (2005)CrossRefMATHGoogle Scholar
  15. 15.
    Badescu, A., Drekic, S., Landriault, D.: On the analysis of a multi-threshold Markovian risk model. Scand. Actuar. J. 2007(4), 248–260 (2007)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Lina, X.S., Sendova, K.P.: The compound Poisson risk model with multiple thresholds. Insur. Math. Econ. 42(2), 617–627 (2008)CrossRefGoogle Scholar
  17. 17.
    Ramaswami, V.: Passage times in fluid models with application to risk processes. Methodol. Comput. Appl. Probab. 8(4), 497–515 (2006)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Jones, G.L., Harrison, P.G., Harder, U., Field, T.: Fluid queue models of battery life. In: 19th Annual IEEE International Symposium on Modelling. Analysis, and Simulation of Computer and Telecommunication Systems, pp. 278–285 (2011)Google Scholar
  19. 19.
    Stanford, D.A., Latouche, G., Woolford, D.G., Boychuk, D., Hunchak, A.: Erlangized fluid queues with application to uncontrolled fire perimeter. Stoch. Models 21(23), 631–642 (2005)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Bean, N.G., O’Reilly, M.M., Sargison, J.E.: Stochastic fluid flow model of the operation and maintenance of power generation systems. IEEE Trans. Power Syst. 25(3), 1361–1374 (2010)CrossRefGoogle Scholar
  21. 21.
    Mandjes, M., Mitra, D., Scheinhardt, W.: Models of network access using feedback fluid queues. Queueing Syst. 44(4), 365–398 (2003)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Ahn, S., Badescu, A., Ramaswami, V.: Time dependent analysis of finite buffer fluid flows and risk models with a dividend barrier. QUESTA 55(4), 207–222 (2007)MathSciNetMATHGoogle Scholar
  23. 23.
    Bean, N.G., O’Reilly, M.M.: Performance measures of a multi-layer Markovian fluid model. Ann. Oper. Res. 160(1), 99–120 (2008)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Latouche, G., Ramaswami, V.: Introduction to matrix analytic methods in stochastic modeling. In: ASA SIAM, Philadelphia (1999)Google Scholar
  25. 25.
    Asmussen, S., Avram, F., Usbel, M.: Erlangian approximations for finite time ruin probabilities. ASTIN Bull. 32(02), 267–281 (2002)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Ramaswami, V., Woolford, D.G., Stanford, D.A.: The erlangization method for Markovian fluid flows. Ann. Oper. Res. 160(1), 215–225 (2008)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Ramaswami, V.: Matrix analytic methods for stochastic fluid flows. In: Teletraffic Engineering in a Competitive World. Proceedings of the 16th International Teletraffic Congress, pp. 1019–1030 (1999)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceCentral China Normal UniversityWuhanPeople’s Republic of China
  2. 2.School of Mathematics and StatisticsGuangxi Normal UniversityGuilinPeople’s Republic of China

Personalised recommendations