Photonic Network Communications

, Volume 30, Issue 1, pp 59–70 | Cite as

QoS-aware energy-efficient mechanism for sleeping mode ONUs in enhanced EPON

  • AliAkbar Nikoukar
  • I-Shyan Hwang
  • Andrew Tanny Liem
  • Chien-Jung Wang


Ethernet passive optical network (EPON) is a broadband access time-division multiplexing passive optical network technology which can be referred to as green network, as it has less power consumption compared with other networks. The optical network unit (ONU) is the best candidate to implement energy-saving adjustments in EPON. Turning off the ONU transmitter (Tx)/receiver (Rx) for substantial time is a common method to achieve the energy saving. However, setting overlong sleep duration decreases the QoS, while short sleep duration increases the ONU power consumption. The challenging issue is how to balance the trade-off between achieving energy saving and guaranteeing QoS. In this paper, we introduce an enhanced EPON architecture and a QoS-aware energy-saving mechanism to reduce ONU energy consumption and guarantee an overall QoS metric based on the ITU-T standards requirements. To achieve the energy saving in the upstream/downstream direction, two sleep durations are defined for the ONU’s Tx/Rx to generate four ONU modes including active, transmission, doze, and sleep. Simulation results show that the proposed scheme improves the energy efficiency 44 % in average to fulfill the QoS metrics in terms of packet loss, delay and jitter, and the buffer requirement.


TDM-EPON Energy saving Sleeping mode ONU Enhanced EPON QoS 


  1. 1.
    International Energy Outlook 2013.
  2. 2.
  3. 3.
    Baliga, J., Ayre, R.W.A., Hinton, K., Sorin, W.V., Tucker, R.S.: Energy consumption in optical IP networks. IEEE/OSA J. Lightwave Technol. 27(13), 2391–2403 (2009)CrossRefGoogle Scholar
  4. 4.
    Li, C., Guo, W., Hu, W., Xia, M.: Energy-efficient dynamic bandwidth allocation for EPON networks with sleep mode ONUs. Opt. Switch. Netw. 15, 121–133 (2015)CrossRefGoogle Scholar
  5. 5.
    Baliga, J., Ayre, R.W.A., Sorin, W.V., Hinton, K., Tucker, R.S.: Energy consumption in access networks. In: Optical Fiber communication/National Fiber Optic Engineers Conference, (Feb. 2008), pp. 1–3Google Scholar
  6. 6.
    Vetter, P., Suvakovic, D., Chow, H., Anthapadmanabhan, P., Kanonakis, K., Lee, K.L., Saliou, F., Yin, X., Lannoo, B.: Energy-efficiency improvements for optical access. IEEE Commun. Mag. 52(4), 36–144 (2014)CrossRefGoogle Scholar
  7. 7.
    Mahloo, M., Chen, J., Wosinska, L.: PON versus AON: Which Is the best solution to offload core network by peer-to-peer traffic localization. Opt. Switch. Netw. 15, 1–9 (2015)CrossRefGoogle Scholar
  8. 8.
    McGarry, M., Reisslein, M., Maier, M.: Ethernet passive optical network architectures and dynamic bandwidth allocation algorithms. IEEE Commun. Surv. Tutor. 10(3), 46–60 (2008)CrossRefGoogle Scholar
  9. 9.
    Hwang, I.S., Shyu, Z.D., Ke, L.Y., Chang, C.C.: A novel early DBA mechanism with prediction-based fair excessive bandwidth allocation scheme in EPON. Comput. Commun. 31(9), 1814–1823 (2008)CrossRefGoogle Scholar
  10. 10.
    Zheng, J., Mouftah, H.T.: A survey of dynamic bandwidth allocation algorithms for ethernet passive optical networks. Opt. Switch. Netw. 6(3), 151–162 (2009)CrossRefGoogle Scholar
  11. 11.
    Hwang, I.S., Lee, J.Y., Lai, K.R., Liem, A.T.: Generic QoS-aware interleaved dynamic bandwidth allocation in scalable EPONs. IEEE/OSA J. Opt. Commun. Netw. 4(2), 99–107 (2012)CrossRefGoogle Scholar
  12. 12.
    Dixit, A., Lannoo, B., Das, G., Colle, D., Pickavet, M., Demeester, P.: Dynamic bandwidth allocation with SLA awareness for QoS in ethernet passive optical networks. IEEE/OSA J. Opt. Commun. Netw. 5(3), 240–253 (2013)CrossRefGoogle Scholar
  13. 13.
    Lee, J.Y., Hwang, I.S., Nikoukar, A., Liem, A.T.: Comprehensive performance assessment of bi-partition upstream bandwidth assignment schemes in GPON. IEEE/OSA J. Opt. Commun. Netw. 5(11), 1285–1295 (2013)CrossRefGoogle Scholar
  14. 14.
    Hwang, I.S., Tu, M.Y., Tseng, W.D., Shyu, Z.D.: A novel dynamic fault restoration mechanism using cluster allocation approach in WDM mesh networks. Comput. Commun. 29(18), 3921–3932 (2006)CrossRefGoogle Scholar
  15. 15.
    Hwang, I.S., Shyu, Z.D., Chang, C.C., Lee, J.Y.: Fault-tolerant architecture with dynamic wavelength and bandwidth allocation scheme in WDM-EPON. Photonic Netw. Commun. 18(2), 160–173 (2009)CrossRefGoogle Scholar
  16. 16.
    Shi, L., Mukherjee, B., Lee, S.S.: Energy-efficient PON with sleep-mode ONU: progress, challenges, and solutions. IEEE Netw. 26(2), 36–41 (2012)CrossRefGoogle Scholar
  17. 17.
    Dhaini, A.R., Ho, P.H., Shen, G., Shihada, B.: Energy efficiency in TDMA-based next-generation passive optical access networks. IEEE/ACM Trans. Netw. 22(3), 850–863 (2014)CrossRefGoogle Scholar
  18. 18.
    Dhaini, A.R., Ho, P.H., Shen, G.: Toward green next-generation passive optical networks. IEEE Commun. Mag. 49(11), 94–101 (2011)CrossRefGoogle Scholar
  19. 19.
    Shah Newaz, S.H., Cuevas, A., Lee, G.M., Crespi, N., Choi, J.K.: Adaptive delay-aware energy efficient TDM-PON. Comput. Netw. 57(7), 1577–1596 (2013)CrossRefGoogle Scholar
  20. 20.
    Zhang, L., Liu, Y., Guo, L., Gong, X.: Energy-saving scheme based on downstream packet scheduling in ethernet passive optical networks. Opt. Fiber Technol. 19(2), 169–178 (2013)CrossRefGoogle Scholar
  21. 21.
    Yang, H., Sun, W., Li, J., Hu, W.: Energy efficient TWDM multi-PON system with wavelength relocation. IEEE/OSA J. Opt. Commun. Netw. 6(6), 571–577 (2014)CrossRefGoogle Scholar
  22. 22.
    Zhang, J., Hosseinabadi, M.T., Ansari, N.: Standards-compliant EPON sleep control for energy efficiency: design and analysis. IEEE/OSA J. Opt. Commun. Netw. 5(7), 677–685 (2013)CrossRefGoogle Scholar
  23. 23.
    Herreria-Alonso, S., Rodriguez-Perez, M., Fernandez-Veiga, M., Lopez-Garcia, C.: On the use of the Doze Mode to reduce power consumption in EPON systems. IEEE/OSA J. Lightwave Technol. 32(2), 285–292 (2014)CrossRefGoogle Scholar
  24. 24.
    Zhang, L., Yu, C., Guo, L., Liu, Y.: Energy-saving mechanism based on double-sleep-state algorithm and dynamic double-threshold receiver selection in EPON. Optik 124(18), 3655–3664 (2013)CrossRefGoogle Scholar
  25. 25.
    Evans, J., Filsfiles, C.: Deploying diffserv. In Deploying IP and MPLS QoS for Multiservice Networks Theory and Practice, The Morgan Kaufmann Series in Networking, pp. 209–272, (March 2007)Google Scholar
  26. 26.
    Bai, X., Shami, A.: Modeling self-similar traffic for network simulation. Tech. Rep. NetRep-2005-01, (2005)Google Scholar
  27. 27.
    Hwang, I.S., Nikoukar, A., Teng, C.H., Lai, K.R.: Scalable architecture for VOD service enhancement based on a cache scheme in an ethernet passive optical network. IEEE/OSA J. Opt. Commun. Netw. 5(4), 271–282 (2013)CrossRefGoogle Scholar
  28. 28.
    Hwang, I.S., Nikoukar, A., Chen, K.C., Liem, A.T., Lu, C.H.: QoS enhancement of live IPTV using an extended real-time streaming protocol in ethernet passive optical networks. IEEE/OSA J. Opt. Commun. Netw. 6(8), 695–704 (2014)CrossRefGoogle Scholar
  29. 29.
    Liem, A.T., Hwang, I.S., Nikoukar, A.: An autonomous recovery mechanism against optical distribution network failures in EPON. Opt. Fiber Technol. 20(5), 552–560 (2014)CrossRefGoogle Scholar
  30. 30.
    Kramer, G., Mukherjee, B., Dixit, S., Ye, Y., Hirth, R.: Supporting differentiated classes of service in ethernet passive optical networks. J. Opt. Netw. 1(8), 280–298 (2002)Google Scholar
  31. 31.
    ITU-T Recommendation G.114: One-way Transmission Time, in Series G: Transmission Systems and Media, Digital Systems and Networks, (May 2000)Google Scholar
  32. 32.
    Hajduczenia, M., da Silva, H.J.A., Monteiro, P.P.: On efficiency of ethernet passive optical networks (EPONs). In: Proceedings of 11th IEEE Symposium on Computers and Communications, pp. 566–572 (2006)Google Scholar
  33. 33.
    Evans, J.W., Filsfils, C.: “Deploying IP and MPLS QoS for multiservice networks: theory & practice,” The Morgan Kaufmann Series in Networking, (March 2007)Google Scholar
  34. 34.
    ITU-T Recommendation G. 1010: “End-user Multimedia QoS Categories,” URL:

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • AliAkbar Nikoukar
    • 1
    • 2
  • I-Shyan Hwang
    • 1
  • Andrew Tanny Liem
    • 3
  • Chien-Jung Wang
    • 1
  1. 1.Department of Computer Science and EngineeringYuan-Ze UniversityChung-LiTaiwan
  2. 2.College of ScienceYasouj UniversityYasoujIran
  3. 3.Department of Computer ScienceKlabat UniversityManadoIndonesia

Personalised recommendations