Advertisement

Photonic Network Communications

, Volume 28, Issue 1, pp 45–57 | Cite as

Multipath restoration and bitrate squeezing in SDN-based elastic optical networks [Invited]

  • Francesco Paolucci
  • Alberto Castro
  • Filippo Cugini
  • Luis Velasco
  • Piero Castoldi
Article

Abstract

Sliceable bandwidth-variable transponders (SBVTs) enable the adaptation of transmission parameters according to traffic requirements and network constraints. In this study, SBVTs capabilities are evaluated in the context of restoration. In particular, multipath recovery and bitrate squeezing are applied to maximize the amount of restored bitrate, also exploiting limited portions of spectrum resources along multiple routes. An integer linear programming model and heuristic strategy are proposed. A software defined network (SDN) architecture is then introduced to adequately support the SBVT configuration. The SDN architecture is applied to experimentally assess that the overall re-configuration time upon failure detection is included within two seconds, largely dominated by the proprietary control of bandwidth-variable optical cross-connects. Finally, extensive simulation results show the relevant restoration capabilities achieved by the proposed multipath recovery and bitrate squeezing scheme.

Keywords

Flexgrid optical networks Software defined network Multipath restoration Bitrate squeezing 

Notes

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 238875 GÉANT (open call REACTION), and from the Spanish Science Ministry through ELASTIC (TEC2011-27310) Project.

References

  1. 1.
    Jinno, M., Takara, H., Kozicki, B., Tsukishima, Y., Sone, Y., Matsuoka, S.: Spectrum-efficient and scalable elastic optical path network: architecture, benefits, and enabling technologies. IEEE Commun. Mag. 47, 66–73 (2009)CrossRefGoogle Scholar
  2. 2.
    Jinno, M., Takara, H., Sone, Y., Yonenaga, K., Hirano, A.: Multiflow optical transponder for efficient multilayer optical networking. IEEE Commun. Mag. 50, 56–65 (2012)CrossRefGoogle Scholar
  3. 3.
    Velasco, L., Wright, P., Lord, A., Junyent, G.: Saving capex by extending flexgrid-based core optical networks towards the edges (Invited Paper). IEEE/OSA J. Opt. Commun. Netw. (JOCN) 5, A171–A183 (2013)CrossRefGoogle Scholar
  4. 4.
    de la Cruz Miranda, B., Gonzalez de Dios, O., Lopez, V., Fernández-Palacios, J.: OpEx savings by reduction of stock of spare parts with Sliceable Bandwidth Variable Transponders. In: Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper W3A.5 (2014)Google Scholar
  5. 5.
    Zhang, J., Zhao, Y., Zhang, J., Mukherjee, B.: Energy efficiency of IP-over-elastic optical networks with sliceable optical transponder. In: Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper W3A.4 (2014)Google Scholar
  6. 6.
    Dallaglio, M., Giorgetti, A., Sambo, N., Cugini, F., Castoldi, P.: Impact of slice-ability on dynamic restoration in GMPLS-based flexible optical networks. In: Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th4E.1 (2014)Google Scholar
  7. 7.
    Castro, A., Velasco, L., Comellas, J., Junyent, G.: Dynamic restoration in multi-layer IP/MPLS-over-flexgrid networks. In: Proceedings of IEEE Design of Reliable Communication Networks (DRCN) (2013)Google Scholar
  8. 8.
    Sone, Y., Watanabe, A., Imajuku, W., Tsukishima, Y., Kozicki, B., Takara, H., Jinno, M.: Bandwidth squeezed restoration in spectrum-sliced elastic optical path networks (slice). IEEE/OSA J. Opt. Commun. Netw. (JOCN) 3, 223–233 (2011)CrossRefGoogle Scholar
  9. 9.
    Castro, A., Velasco, L., Ruiz, M., Comellas, J.: Single-path provisioning with multi-path recovery in flexgrid optical networks. In: International Workshop on Reliable Networks Design and Modeling (RNDM) (2012)Google Scholar
  10. 10.
  11. 11.
    Liu, L., Muñoz, R., Casellas, R., Tsuritani, T., Martínez, R., Morita, I.: Openslice: an open flow-based control plane for spectrum sliced elastic optical path networks. In: Proceedings of ECOC (2012)Google Scholar
  12. 12.
    Channegowda, M. et al.: First demonstration of an OpenFlow based software-defined optical network employing packet, fixed and flexible DWDM grid technologies on an international multi-domain test-bed. In: Proceedings of ECOC (2012)Google Scholar
  13. 13.
    Paolucci, F., Cugini, F., Hussain, N., Fresi, F., Potì, L.: Open flow-based flexible optical networks with enhanced monitoring functionalities. In: Proceedings of ECOC (2012)Google Scholar
  14. 14.
    Liu, L., Tsuritani,T., Morita, I., Yoo, S.: Optical network control and management technology using OpenFlow. In: Proceedings of OptoElectronics and Communications Conference/International Conference on Photonics in Switching (OECC/PS) (2013)Google Scholar
  15. 15.
    Gringeri, S., Bitar, N., Xia, T.: Extending software defined network principles to include optical transport. IEEE Commun. Mag. 51, 32–40 (2013)CrossRefGoogle Scholar
  16. 16.
    Simeonidou, D., Nejabati, R., Channegowda, M.: Software defined optical networks technology and infrastructure: enabling software-defined optical network operations. IEEE/OSA J. Opt. Commun. Netw. (JOCN) 5, A274–A282 (2013)CrossRefGoogle Scholar
  17. 17.
    Velasco, L., Castro, A., Ruiz, M., Junyent, G.: Solving routing and spectrum allocation related optimization problems: from off-line to in-operation flexgrid network planning. IEEE/OSA J. Lightw. Technol. (JLT) PP (99), 1 (2014). doi: 10.1109/JLT.2014.2315041
  18. 18.
    Ramaswami, R., Sivarajan, K.N.: Routing and wavelength assignment in all-optical networks. IEEE/ACM Trans. Netw. 3, 489–500 (1995)CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Draft revised G.694.1 version 1.3. Unpublished ITU-T Study Group 15, Question 6Google Scholar
  21. 21.
    Yen, J.: An algorithm for finding shortest routes from all source nodes to a given destination in general networks. Q. Appl. Math. 27, 526–530 (1970)MATHGoogle Scholar
  22. 22.
    Cugini, F., Meloni, G., Paolucci, F., Sambo, N., Secondini, M., Gerardi, L., Poti, L., Castoldi, P.: Demonstration of flexible optical network based on path computation element. IEEE/OSA J. Lightw. Technol. 30(5) 727–733 (2013)Google Scholar
  23. 23.
    Sambo, N., Paolucci, F., Cugini, F., Secondini, M., Potì, L., Berrettini, G., Meloni, G., Fresi, F., Bottari, G., Castoldi, P.: Software defined code-rate-adaptive Terabit/s based on time-frequency packing. In: Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online), paper OTh1H.5 (2013)Google Scholar
  24. 24.
  25. 25.
    Castro, A., Velasco, L., Ruiz, M., Klinkowski, M., Fernández-Palacios, J.P., Careglio, D.: Dynamic routing and spectrum (re)allocation in future flexgrid optical networks. Comput. Netw. 56, 2869–2883 (2012)CrossRefGoogle Scholar
  26. 26.
    Castro, A., et al.: Experimental demonstration of an active stateful PCE performing elastic operations and hitless defragmentation. In: 39th European Conference and Exhibition on Optical Communication (ECOC 2013), 22–26 Sept 2013Google Scholar
  27. 27.
    Popescu, I., Cerutti, I., Sambo, N., Castoldi, P.: On the optimal design of a spectrum-switched optical network with multiple modulation formats and rates. IEEE/OSA J. Opt. Commun. Netw. 5(11), 1275–1284 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Francesco Paolucci
    • 1
  • Alberto Castro
    • 2
  • Filippo Cugini
    • 3
  • Luis Velasco
    • 2
  • Piero Castoldi
    • 1
  1. 1.TeCIP, Scuola Superiore Sant’AnnaPisaItaly
  2. 2.Universitat Politècnica de Catalunya (UPC)BarcelonaSpain
  3. 3.CNITPisaItaly

Personalised recommendations