Photonic Network Communications

, Volume 26, Issue 2–3, pp 84–94 | Cite as

Channel reusability for burst scheduling in OBS networks

  • Gustavo B. Figueiredo
  • Nelson L. S. da Fonseca


This paper presents a novel channel scheduling policy for optical burst switching networks called least reusable channel (LRC). LRC decides to which interval of the output channel (void) an incoming burst should be allocated on the basis of reuse of the remaining voids. LRC dynamically uses information available to make allocation decisions. It is shown here that LRC produces lower blocking probability and distributes losses more uniformly among routes than do other existing scheduling policies.


OBS networks Channel scheduling  Channel reusability 



This work was partially sponsored by CNPq and FAPESP.


  1. 1.
    Qiao, C., Yoo, M.: Choices, features and issues in optical burst switching (OBS). Opt. Netw. Mag. 1, 36–44 (2000)Google Scholar
  2. 2.
    Xiong, Y., Vandenhoute, M., Cankaya, C.: Control architecture in optical burst-switched wdm networks. IEEE J. Sel. Areas Commun. 18, 1838–1851 (2000)Google Scholar
  3. 3.
    Turner, J.: Terabit bursts switching. J. High Speed Netw. 8, 3–16 (1999)Google Scholar
  4. 4.
    Murty, C., Gurusamy, M.: WDM Optical Networks: Concepts, Design and Algorithms. Prentice Hall, Upper Saddle River (2002)Google Scholar
  5. 5.
    Yu, X., Li, J., Cao, X., Chen, Y., Qiao, C.: Traffic statistics and performance evaluation in optical burst switched networks. J. Lightwave Technol. 22(12), 2722–2738 (2004)CrossRefGoogle Scholar
  6. 6.
    Kumar, R.K.P.P., Kumar, R.M.: Performance analysis of optical burst switching using burst delay feedback scheduling with different methods. In: International Conference on Computing, Communication and Applications, pp. 1–6 (2012)Google Scholar
  7. 7.
    Ichikawa, H., Kamakura, K.: Dimensioning an scheduler buffer in OBS networks using forward resource reservation. In: International Conference on Computing, Networking and Communications (ICNC), pp. 282–286 (2012)Google Scholar
  8. 8.
    Netak, L., Chowdhary, G., Suryawanshi, V., Borade, J.: Reverse scheduling approach for burst loss minimization in WDM OBS based networks. In: International Conference on Computer and Communication Technology (ICCCT), pp. 517–523 (2011)Google Scholar
  9. 9.
    Wu, G., Zhan, T., Chen, J., Li, X., Qiao, C.: Design and implementation of an index-based parallel scheduler for optical burst switching networks. In: Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), pp. 1–3 (2011)Google Scholar
  10. 10.
    Rogiest, W., De Turck, K., Laevens, K., Fiems, D., Bruneel, H., Wittevrongel, S.: Optimized channel and delay selection for contention resolution in optical networks. In: IEEE International Conference on Communications (ICC), pp. 1–5 (2011)Google Scholar
  11. 11.
    Figueiredo, G., da Fonseca, N.L.S.: Algorithm with linear computational complexity for batch scheduling in OBS networks. In: IEEE International Conference on Communications, pp. 1–6 (2011)Google Scholar
  12. 12.
    Zhou, B., Bassiouni, M. A.: Threshold-based preemption scheme for improving throughput in OBS networks. Photonic Netw. Commun. 24, 1–10 (2011)Google Scholar
  13. 13.
    Yang, X., Huang, S., Yan, H., Long, K.: A distributed backoff-channel deflection algorithm with load balancing for optical burst switching networks. Photonic Netw. Commun. 1–8 (2011)Google Scholar
  14. 14.
    Xiong, Y., Vandenhoute, M., Cankaya, C.: Design and analysis of optical burst-switched networks. In: SPIE’99 Conference on All Optical Networking: Architecture, Control and Management Issues, vol. 3843, pp. 112–119 (1999)Google Scholar
  15. 15.
    Chen, Y., Qiao, C., Xiang, Y.: Optical burst switching (OBS): a new area in optical networking research. IEEE Netw. 18, 16–23 (2004)CrossRefGoogle Scholar
  16. 16.
    Xu, J., Qiao, C., li, J.: Efficient burst scheduling algorithms in optical burst-switched networks using geometric techniques. IEEE J. Sel Areas Commun. 22, 1796–1811 (2004)CrossRefGoogle Scholar
  17. 17.
    Xu, J., Qiao, C., Li, J., Xu, G.: Efficient channel scheduling algorithms in optical burst switched networks. In: IEEE INFOCOM (2003)Google Scholar
  18. 18.
    Wang, X., Morikawa, H., Aoyama, T.: Priority-based wavelength assignment algorithm for optical burst switched photonic networks. In: Optical Fiber Communications Conference, pp. 765–766 (2002)Google Scholar
  19. 19.
    Li, J., Qiao, C.: Schedule bursts proactively for optical bursts switched networks. Comput. Netw. 44, 617–629 (2004)CrossRefMATHGoogle Scholar
  20. 20.
    Detti, A., Eramo, V., Listanti, M.: Performance evaluation of a new technique for IP support in a WDM optical network: optical composite burst switching (OCBS). J. Lightwave Technol. 20, 154–165 (2002)CrossRefGoogle Scholar
  21. 21.
    Vokkarane, V.M., Jue, J.P.: Prioritized burst segmentation and composite burst-assembly techniques for QOS support in optical burst-switched networks. IEEE J. Sel. Areas Commun. 21, 1198–1209 (2003)CrossRefGoogle Scholar
  22. 22.
    Chang, J., Park, C.: Efficient channel scheduling algorithm in optical burst switching architecture. In: IEEE Workshop on High Performance Switching and Routing, pp. 194–198 (2002)Google Scholar
  23. 23.
    Papoulis, A.: Probability, Random Variables and Stochastic Process, chap. 3. McGraw-Hill, London (2002)Google Scholar
  24. 24.
    Figueiredo, G.B., da Fonseca, N.L.S., Monteiro, J.A.S.: A minimum interference routing algorithm with reduced computational complexity. Comput. Netw. 50, 1710–1732 (2006)Google Scholar
  25. 25.
    Figueiredo, G.B., da Fonseca, N.L.S., Monteiro, J.A.S.: A minimum interference routing algorithm. IEEE Int. Conf. Commun. 4, 1942–1947 (2004)Google Scholar
  26. 26.
    Maranho, J., Soares, A., Giozza, W.F.: An architectural study of wavelength conversion in wdm networks with burst switching (in Portuguese). In: Proceedings of the Brazilian Symposium on Computer Networks (SBRC), pp. 133–146 (2007)Google Scholar
  27. 27.
    Figueiredo, G., da Fonseca, N.L.S., Melo, C., Salvador, M.: On the transformation of multifractal traffic at ingress optical burst switches. In: IEEE International Conference on Communications (ICC ’06), vol. 3, pp. 1040–1045 (2006)Google Scholar
  28. 28.
    Zegura, E. W., Calvert, K. L., Bhattacharjee, S.: How to model an internetwork. In: IEEE INFOCOM, pp. 594–602 (1996)Google Scholar
  29. 29.
    Waxman, B.M.: Routing of multipoint connections. IEEE J. Sel. Areas Commun. 6(9), 1617–1622 (1988)Google Scholar
  30. 30.
    Melo, C.A.V., da Fonseca, N.L.S.: Envelope process and computation of the equivalent bandwidth of multifractal flows. Comput. Netw. 48, 351–375 (2005)Google Scholar
  31. 31.
    da Fonseca, N.L.S., Mayor, G.S., Neto, C.A.V.: On the equivalent bandwidth of self-similar sources. ACM Trans Model. Comput. Simul. (TOMACS) 2(10), 104–124 (2000)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Gustavo B. Figueiredo
    • 1
  • Nelson L. S. da Fonseca
    • 2
  1. 1.Department of Computer ScienceFederal University of BahiaSalvador, BahiaBrazil
  2. 2.Institute of ComputingUniversity of CampinasCampinas, São PauloBrazil

Personalised recommendations