Photonic Network Communications

, Volume 23, Issue 3, pp 217–229 | Cite as

Hierarchical routing and traffic grooming in IP/MPLS-based ASON/GMPLS multi-domain networks

  • Wajdi Halabi
  • Kris Steenhaut
  • Marnix Goossens
  • Thu-Huong Truong
  • Ann Nowé


Routing, connection setup, and path computation are well-known problems in multi-domain networks, which have been largely analyzed in pure IP (packet) networks. In circuit-switched optical multi-domain networks, there remain, however, a number of routing and path computation challenges. Traffic grooming means combining a number of low-speed traffic streams so that the high capacity of each lightpath may be used as efficiently as possible, as path computation implements the core of the grooming function, it is obvious that solutions for the traffic grooming problem in optical multi-domain networks are still not sufficiently investigated. In this study we propose a methodology to address the problems of routing, connection setup, and traffic grooming in optical multi-domain networks, which adapts a two-level hierarchical routing scheme and full-mesh topology abstraction algorithm to improve routing scalability and lower inter-domain blocking probabilities; additionally our proposed methodology adapts a scheme for traffic grooming in DWDM multi-domain networks to improve the resources usage. To test our proposed methodology we propose a detailed IP/MPLS-based ASON/GMPLS multi-domain multilayer test framework.


ASON/GMPLS Integrated IP/WDM routing Traffic grooming IP/MPLS Optical multi-domain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cisco Visual Networking Index Forecast and Methodology, 2010-2015, CISCO White Paper available at (2011)
  2. 2.
    Liu, Q., Kok, M., Ghani, N., Gumaste, A.: Hierarchical routing in multi-domain optical networks. Computer Communications. 30(1), 122–131 (2006). Available at Google Scholar
  3. 3.
    Ghani, N., Benhaddou, D., Rao, N.S.V., Lehman, T.: Control plane design in multidomain/multilayer optical networks. IEEE Communications Magazine. 46(6), 78–87 (2008). Available at Google Scholar
  4. 4.
    Bernstein G., Rajagopalan B., Saha D.: Optical network control-architecture, protocols and standards. Addison Wesley, Boston (2003)Google Scholar
  5. 5.
    Mannie, E., et al.: Generalized multi-protocol label switching (GMPLS) architecture, RFC 3945 (2004)Google Scholar
  6. 6.
    Mohan G. et al.: QoS routing in GMPLS-capable integrated IP/WDM networks with router cost constraints. Comput. Commun. 31(1), 19–34 (2008)CrossRefGoogle Scholar
  7. 7.
    Colitti, W., Steenhaut, K., Colle, D., et al.: Integrated routing in GMPLS-based IP/WDM networks. Photon. Netw. Commun. (2010). Available at
  8. 8.
    Katz, D., Kompella, K.: Traffic engineering (TE) extensions to OSPF Version 2-IETF RFC 3630 (2003)Google Scholar
  9. 9.
    Oki E. et al.: Dynamic multilayer routing schemes in GMPLSbased IP+optical networks. IEEE Commun. Mag. 43(1), 108–114 (2005)CrossRefGoogle Scholar
  10. 10.
    Alanqar, W., Jukan, A.: Extending end-to-end optical service provisioning and restoration in carrier networks: opportunities, issues, and challenges. IEEE Commun. Mag. 52–60 (2004)Google Scholar
  11. 11.
    Comellas J. et al.: Integrated IP/WDM routing in GMPLS-based optical networks. IEEE Network 17(2), 22–27 (2003)CrossRefGoogle Scholar
  12. 12.
    The value of OTN for network convergence and IP/Ethernet migration, Ciena White Paper available at (2009)
  13. 13.
    Dutta, R., et al. (eds.): Traffic Grooming for Optical Networks, Springer Science+Business Media, LLC (2008)Google Scholar
  14. 14.
    Iliadis I.: Optimal PNNI complex node representations for restrictive costs and minimal path computation time. IEEE/ACM Trans. Netw. 8(4), 493–506 (2000)CrossRefGoogle Scholar
  15. 15.
    Bruin, X., et al.: Hierarchical Routing With QoS Constraints in Optical Transport Networks, 3rd IFIP-TC6 Networking Conference, Athens, Greece (2004)Google Scholar
  16. 16.
    Liu, Q., et al.: Hierarchical Inter-Domain Routing in Optical DWDM Networks, IEEE INFOCOM 2006 High-Speed Networking Workshop. Barcelona, Spain (2006)Google Scholar
  17. 17.
    Saradhi C., Ramamurthy B., Schupke D., Oki E.: Guest editorial-multidomain optical networks: issues and challenges. IEEE Commun. Mag. 46(6), 76–77 (2008)CrossRefGoogle Scholar
  18. 18.
    Liu, Q., Xie, C., Frangieh, T., et al.: Routing scalability in multi-domain DWDM networks. Photon. Netw. Commun. 17(1), 63–74. Available at (2008)Google Scholar
  19. 19.
    Zhu, Y., et al.: End-to-End Service Provisioning in Multi-Granularity Multi-Domain Optical Networks, IEEE ICC ’04, Paris, France, (2004)Google Scholar
  20. 20.
    Hadjiantonis A. et al.: Evolution to a converged layer 1, 2 in a global-scale, native ethernet over WDM Based Optical Networking Architecture. IEEE JSAC 25(5), 1048–1058 (2007)Google Scholar
  21. 21.
    Liu, Q., Ghani, N., Rao, N.S.V., Lehman, T.: Multi-Domain Multi-Granularity Service Provisioning in Hybrid DWDM/SONET Networks. High-Speed Networks Workshop. 2007:26–30. Available at (2007)
  22. 22.
    Kodialam, M., et al.: Integrated dynamic IP and wavelength routing in IP over WDM networks. In: Proceedings of Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), vol. 1, pp. 358–366 (2001)Google Scholar
  23. 23.
    Salvadori, E., et al.: A traffic engineering scheme for QoS routing in G-MPLS networks based on transmission quality. In: Proceedings of the Eighth IFIP Working Conference on Optical Network Design and Modeling (ONDM), pp. 343–362 (2004)Google Scholar
  24. 24.
    Colitti, W., Steenhaut, K., Gurzi, P., et al.: Service differentiation in IP/MPLS over ASON/GMPLS networks. Photon. Netw. Commun. 19(3), 301–310. Available at (2009)
  25. 26.
    Fodor P. et al.: Layer-preference policies in multi-layer GMPLS networks. Photon. Netw. Commun. 18(3), 300–313 (2009)MathSciNetCrossRefGoogle Scholar
  26. 27.
    Gabeiras J.E. et al.: Is multilayer networking feasible?. Opt. Switch. Netw. 6(2), 129–140 (2009)CrossRefGoogle Scholar
  27. 28.
    Berger, L.: Generalized Multi-Protocol Label Switching (GMPLS) Signaling Resource ReserVation Protocol-Traffic Engineering (RSVP-TE) Extensions IETF RFC 3473 (2003)Google Scholar
  28. 29.
    OMNET++ version 4.0 user manual, available online at
  29. 30.
    INET Framework for OMNeT++/OMNEST.

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Wajdi Halabi
    • 1
  • Kris Steenhaut
    • 1
    • 2
  • Marnix Goossens
    • 1
  • Thu-Huong Truong
    • 4
  • Ann Nowé
    • 1
    • 3
  1. 1.ETRO DepartmentVrije Universiteit Brussel (VUB)BrusselsBelgium
  2. 2.IWT DepartmentErasmus Hogeschool Brussel (EHB)BrusselsBelgium
  3. 3.COMO LabVrije Universiteit Brussel (VUB)BrusselsBelgium
  4. 4.Department of Communication SystemsHanoi University of Science and TechnologyHanoiVietnam

Personalised recommendations