Photonic Network Communications

, Volume 21, Issue 2, pp 107–116 | Cite as

Higher-order dispersion mitigation for spectrum-sliced FFH-OCDMA using adaptive prime-hop codes



The fast frequency hopping optical CDMA with prime-hop codes (PHCs) provides great flexibility and increases spectral efficiency in comparison with direct sequence methods. Applying the spectrum-sliced incoherent source will further reduce the system cost. However, the dispersion in such an incoherent system becomes a limiting factor to the bit error rate. A novel adaptive PHC scheme to such systems is proposed in this article. The main impact of the scheme is to reduce the power loss and the bit error rate (BER) degradation due to higher-order dispersion. The impact of inherit beat noise in spectrum slicing systems is also alleviated. Performance comparisons between the adaptive PHC and original PHC schemes indicate that the former is more suitable for use in the considered incoherent system, accommodating up to 17% more users for a given BER. The proposed adaptive method can be universally applied to mitigate dispersion effects in the similar 2D OCDMA systems.


Optical CDMA Fast frequency hopping Prime-hop codes Spectrum slicing Chromatic dispersion Dispersion slope Fibre Bragg grating 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Salehi J.A.: Code division multiple-access techniques in optical fibre networks I fundamental principles. IEEE Trans. Commun. 37, 824–833 (1989)CrossRefGoogle Scholar
  2. 2.
    Azizoglu M., Salehi J.A., Li Y.: Optical CDMA via temporal codes. IEEE Trans. Commun. 40, 1162–1170 (1992)MATHCrossRefGoogle Scholar
  3. 3.
    Zaccarin D., Kavehrad M.: An optical CDMA system based on spectral encoding of LED. IEEE Photon. Technol. Lett. 5, 479–482 (1993)CrossRefGoogle Scholar
  4. 4.
    Fathallah H., Rusch L.A., LaRochelle S.: Passive optical fast frequency-hop CDMA communications system. J. Lightwave Technol. 17, 397–405 (1999)CrossRefGoogle Scholar
  5. 5.
    Tancevski L., Andonovic I.: Hybrid wavelength hopping/time spreading schemes for use in massive optical networks with increased security. J. Lightwave Technol. 14, 2636–2647 (1996)CrossRefGoogle Scholar
  6. 6.
    Prucnal P., Santoro M., Fan T.: Spread spectrum fiber-optic local area network using optical processing. J. Lightwave. Technol. 4, 547–554 (1986)CrossRefGoogle Scholar
  7. 7.
    Yang G.C., Kwong W.C.: Performance analysis of optical CDMA with prime codes. Electron. Lett. 31, 569–570 (1995)CrossRefGoogle Scholar
  8. 8.
    Tancevski L., Andonovic I.: Wavelength hopping/time spreading code division multiple accesssystems. Electron. Lett. 30, 1388–1390 (1994)CrossRefGoogle Scholar
  9. 9.
    Papannareddy R., Weiner A.M.: Performance comparison of coherent ultrashort light pulse and incoherent broad-band CDMA systems. IEEE Photon. Technol. Lett. 11, 1683–1685 (1999)CrossRefGoogle Scholar
  10. 10.
    Sardesai H.P., Chang C.C., Weiner A.M.: A femtosecond code-division multiple-access communication system test bed. J. Lightwave Technol. 16, 1953–1964 (1998)CrossRefGoogle Scholar
  11. 11.
    Smith E.D.J., Gough P.T., Taylor D.P.: Noise limits of optical spectral-encoding CDMA systems. Electron. Lett. 31, 1469–1470 (1995)CrossRefGoogle Scholar
  12. 12.
    Wen J.H., Lin J.Y., Liu C.Y.: Modified prime-hop codes for optical CDMA systems. IEE Proc. Commun. 150, 404–408 (2003)CrossRefGoogle Scholar
  13. 13.
    Lin J.-Y., Jhou J.-S., Liu C.-Y., Wen J.-H.: Performance analysis of modified prime-hop codes for OCDMA systems with multiuser detectors. Opt. Fiber Technol. 13, 108–116 (2007)CrossRefGoogle Scholar
  14. 14.
    Sun, S., Leeson, M.S.: Transmission performance of spectrum-sliced incoherent 2D FFH-OCDMA systems using modified prime-hop codes. In: International Conference on Communications and Mobile Computing, Kun Ming, China, 531–535 (2009)Google Scholar
  15. 15.
    Sun S.B., Leeson M.S.: Spectrum-sliced wavelength division multiplexed systems with optical preamplifiers. Fiber Integr. Opt. 28, 417–429 (2009)CrossRefGoogle Scholar
  16. 16.
    Salehi J.A., Brackett C.A.: Code division multiple-access techniques in optical fiber networks. II. Systems performance analysis. IEEE Trans. Commun. 37, 834–842 (1989)CrossRefGoogle Scholar
  17. 17.
    Boffi, P., Piccinin, D., Parolari, P., Aldeghi, R., Martinelli M.: Programmable fiber Bragg gratings for spectral CDMA. In: Lasers and Electro-Optics, 2000. (CLEO 2000). Conference on, 578–579 (2000)Google Scholar
  18. 18.
    Kashyap R.: Fiber Bragg Gratings 2nd ed. Elsevier/Academic Press, Amsterdam (2010)Google Scholar
  19. 19.
    Gruer-Nielsen L., Knudsen S.N., Edvold B., Veng T., Magnussen D., Larsen C.C., Damsgaard H.: Dispersion compensating fibers. Opt. Fiber Technol. 6, 164–180 (2000)CrossRefGoogle Scholar
  20. 20.
    Dabarsyah B., Goh C., Khijwania S., Set S., Katoh K., Kikuchi K.: Adjustable dispersion-compensation devices with wavelength tunability based on enhanced thermal chirping of fiber Bragg gratings. IEEE Photon. Technol. Lett. 15, 416–418 (2003)CrossRefGoogle Scholar
  21. 21.
    Agrawal G.P.: Fiber-Optic Communication Systems. Wiley- Interscience, New York (2002)CrossRefGoogle Scholar
  22. 22.
    Royset, A., Laming, R.: Demonstration of standard fiber transmission limited by third-order dispersion. Optical Fiber Communications, OFC’96, pp. 253–254 (1996)Google Scholar
  23. 23.
    Matsumoto S., Takabayashi M., Yoshiara K., Sugihara T., Miyazaki T., Kubota F.: Tunable dispersion slope compensator with a chirped fiber grating and a divided thin-film heater for 160-Gb/s RZ transmissions. IEEE Photon. Technol. Lett. 16, 1095–1097 (2004)CrossRefGoogle Scholar
  24. 24.
    Reyes P., Litchinitser N., Sumetsky M., Westbrook P.: 160-Gb/s tunable dispersion slope compensator using a chirped fiber Bragg grating and a quadratic heater. IEEE Photon. Technol. Lett. 17, 831–833 (2005)CrossRefGoogle Scholar
  25. 25.
    Lee Y.J., Bae J., Lee K., Jeong J.M., Lee S.B.: Tunable dispersion and dispersion slope compensator using strain-chirped fiber Bragg grating. IEEE Photon. Technol. Lett. 19, 762–764 (2007)CrossRefGoogle Scholar
  26. 26.
    Forghieri F., Tkach R.W., Chraplyvy A.R., Marcuse D.: Reduction of four-wave mixing crosstalk in WDM systems using unequally spaced channels. IEEE Photon. Technol. Lett. 6, 754–756 (1994)CrossRefGoogle Scholar
  27. 27.
    Lee J.S., Chung Y.C., DiGiovanni D.J.: Spectrum-sliced amplifier light source for multichannel WDM applications. IEEE Photon. Technol. Lett. 5, 1458–1461 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of EngineeringUniversity of WarwickCoventryUK

Personalised recommendations