Advertisement

Photonic Network Communications

, Volume 20, Issue 3, pp 293–302 | Cite as

A resilient star-ring optical broadcast-and-select network with a centralized multi-carrier light source

  • Yueping Cai
  • Motoharu Matsuura
  • Eiji Oki
  • Naoto Kishi
  • Tetsuya Miki
Article

Abstract

This article presents a resilient star-ring optical broadcast-and-select network with a centralized multi-carrier light source (C-MCLS). It consists of a star part network and a ring part network. Optical carriers generated by the C-MCLS are broadcast to all network nodes, which select and utilize them for data transmission. Optical carrier distribution as well as data transmission and receiving are performed in the star part network. The ring part network is for fiber failure recovery. The network resilience property enables the design of a fast distributed failure recovery scheme to deal with single and multiple fiber failures. We introduce a fiber connection automatic protection switching (FC-APS) architecture that only consists of optical couplers and 1 × 2 optical switches for each network node. Based on the FC-APS architecture, we design a distributed failure recovery scheme to recover the carriers and data affected by fiber failures. The fiber failure detection and failure recovery operations are performed by each network node independently only using its local information. We evaluate the recovery time of the distributed failure recovery scheme compared with that of the centralized one. Numerical results show that the distributed scheme greatly reduces the recovery time compared to the centralized configuration in the recoveries of both single and multiple fiber failures. Optical power loss analysis and compensation of the recovery routes in the distributed scheme are also presented. We show the required number of optical amplifiers for the longest recovery route in the distributed scheme under different numbers of network nodes and fiber span lengths.

Keywords

Optical network Network failure recovery Multi-carrier light source Automatic protection switching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kitayama K.-I., Miki T., Morioka T., Tsushima H., Koga M., Mori K., Araki S., Sato K.-I., Onaka H., Namiki S., Aoyama T.: Photonic network R&D activities in Japan-current activities and future perspectives. IEEE/OSA J. Lightw. Technol. 23(10), 3404–3418 (2005)CrossRefGoogle Scholar
  2. 2.
    Takara H., Ohara T., Mori K., Sato K., Yamada E., Inoue Y., Shibata T., Abe M., Morioka T., Sato K.-I.: More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing. IET Electron. Lett. 36(25), 2089–2090 (2000)CrossRefGoogle Scholar
  3. 3.
    Yamada E., Takara H., Ohara T., Sato K., Jinguji K., Inoue Y., Shibata T., Morioka T.: 106 channel × 10 Gbit/s, 640 km DWDM transmission with 25 GHz spacing with supercontinuum multi-carrier source. IET Electron. Lett. 37(25), 1534–1536 (2001)CrossRefGoogle Scholar
  4. 4.
    Mori K., Sato K., Takara H., Ohara T.: Supercontinuum lightwave source generating 50 GHz spaced optical ITU grid seamlessly over S-, C- and L-bands. IET Electron. Lett. 39(6), 544–546 (2003)CrossRefGoogle Scholar
  5. 5.
    Takara H., Ohara T., Sato K.: Over 1000 km DWDM transmission with supercontinuum multi-carrier source. IET Electron. Lett. 39(14), 1078–1079 (2003)CrossRefGoogle Scholar
  6. 6.
    Miyagawa Y., Yamamoto T., Masuda H., Abe M., Takahashi H., Takara H.: Over-10000-channel 2.5 GHz-spaced ultra-dense WDM light source. IET Electron. Lett. 42(11), 655–657 (2006)CrossRefGoogle Scholar
  7. 7.
    Takara H., Ohara T., Yamamoto T., Masuda H., Abe M., Takahashi H., Morioka T.: Field demonstration of over 1000-channel DWDM transmission with supercontinuum multi-carrier source. IET Electron. Lett. 41(5), 270–271 (2005)CrossRefGoogle Scholar
  8. 8.
    Ohara T., Takara H., Yamamoto T., Masuda H., Morioka T., Abe M., Takahashi H.: Over-1000-channel ultradense WDM transmission with supercontinnum multicarrier source. IEEE/OSA J. Lightw. Technol. 24(6), 2311–2317 (2006)CrossRefGoogle Scholar
  9. 9.
    Cai Y., Matsuura M., Oki E., Kishi N., Miki T.: Optical broadcast-and-select network architecture with centralized multi-carrier light source. IEICE Electron. Express 5(19), 796–801 (2008)CrossRefGoogle Scholar
  10. 10.
    Cai, Y., Oki, E., Matsuura, M., Kishi, N., Miki, T.: Optical broadcast-and-select network architecture with centralized multi-carrier light source. In: Proc. IEEE Int. Conf. on Commun. (ICC 2009) ONS-03-2, Dresden, Germany (2009)Google Scholar
  11. 11.
    Maier M.: Metropolitan area WDM networks-an AWG based approach. Kluwer, Norwell (2003)Google Scholar
  12. 12.
    Kamiyama, N.: Comparison of single-hop WDM architectures for local and metropolitan area networks. In: Proceedings of Conference on Optical Network Design and Modeling 2005, pp. 260–271 (2005)Google Scholar
  13. 13.
    Noguchi K., Koike Y., Tanabe H., Harada K., Matsuoka M.: Field trial of full-mesh WDM network (AWGSTAR) in metropolitan/local area. IEEE/OSA J. Lightw. Technol. 22(2), 329–336 (2004)CrossRefGoogle Scholar
  14. 14.
    Herzog M., Maier M., Wolisz A.: RINGOSTAR: an evolutionary AWG-based WDM upgrade of optical ring networks. IEEE/OSA J. Lightw. Technol. 23(4), 1637–1651 (2005)CrossRefGoogle Scholar
  15. 15.
    Scheutzow M., Seeling P., Maier M., Reisslein M.: WDM star subnetwork upgrade of optical ring networks for maximum spatial reuse under multicast traffic. IEEE J. Sel. Areas Commun. 25(3), 55–67 (2007)CrossRefGoogle Scholar
  16. 16.
    Sun, X., Wang, Z., Chan, C., Chen, L.: A novel star-ring protection architecture scheme for WDM passive optical access networks. In: Proceedings of Optical Fiber Communications Conference 2005, paper JWA53 (2005)Google Scholar
  17. 17.
    Cai, Y., Matsuura, M., Kishi, N., Miki, T.: A novel star-ring optical regional network architecture with dynamic wavelength/waveband broadcast and select. In: Proc. 12th OptoElectronics and Communications Conference (OECC 2007) 12P-3, Yokohama, Japan, July 2007Google Scholar
  18. 18.
    Cai, Y., Matsuura, M., Kishi, N., Miki, T.: Hybrid static–dynamic wavelength/waveband allocation scheme for novel broadcast and select star-ring optical regional network. In: Proc. 13th Asia-Pacific Conference on Communications (APCC 2007) FPM2-3-4, Bangkok, Thailand, Oct 2007Google Scholar
  19. 19.
    Vasseur J.P., Pickavet M., Demeester P.: Network Recovery: Protection and Restoration of Optical, SONET-SDH, IP, and MPLS, pp. 131–200. Morgan Kaufumann, San Francisco (2004)Google Scholar
  20. 20.
    Somani A.K.: Survivability and Traffic Grooming in WDM Optical Networks, pp. 25–26. Cambridge University Press, New York (2005)Google Scholar
  21. 21.
    Saleh A.A.M., Simmons J.M.: Architectural principles of optical regional and metropolitan access networks. IEEE/OSA J. Lightw. Technol. 17(12), 2431–2448 (1999)CrossRefGoogle Scholar
  22. 22.
    Cai, Y., Matsuura, M., Kishi, N., Miki, T.: Modeling and architecture design of novel optical broadcast-and-select network with centralized multi-carrier light source. In: Proc. 13th OptoElectronics and Communications Conference (OECC 2008) P-81. Sydney, Australia, July 2008Google Scholar
  23. 23.
    Ma X., Kuo G.S.: Optical switching technology comparison: optical MEMS vs. other technologies. IEEE Commun. Mag. 41(11), S16–S23 (2003)Google Scholar
  24. 24.
    Papadimitriou G.I., Papazoglou C., Pomportsis A.S.: Optical switching: switch fabrics, techniques, and architectures. IEEE/OSA J. Lightw. Technol. 21(2), 384–405 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Yueping Cai
    • 1
  • Motoharu Matsuura
    • 2
  • Eiji Oki
    • 2
  • Naoto Kishi
    • 2
  • Tetsuya Miki
    • 2
  1. 1.Chongqing UniversityChongqingChina
  2. 2.The University of Electro-CommunicationsTokyoJapan

Personalised recommendations