Photonic Network Communications

, Volume 20, Issue 3, pp 242–246 | Cite as

Investigation of superstructured fiber Bragg grating-based OCDMA system

  • Xiaogang Chen
  • Xiuhua Yuan


The bit error rate (BER) performance of a superstructured fiber Bragg grating (SSFBG)-based optical code division multiple access (OCDMA) system is investigated with different input pulse widths and grating refractive index modulation amplitudes, and the corresponding crosstalk ratio is considered at different data-rates. Simulation results show that increasing the input pulse width or grating refractive index modulation amplitude will degrade the BER performance apparently. Moreover, with fixed code length and chip-rate detection, a lower data-rate system has better tolerance to an increasing input pulse width, while a higher data-rate system has better tolerance to an increasing grating refractive index modulation amplitude.


Optical code division multiple access Superstructured fiber Bragg grating Input pulse width Grating refractive index modulation amplitude BER performance Crosstalk ratio 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stok A., Sargent E.H.: The role of optical CDMA in access network. IEEE Commun. Mag. 40(9), 83–87 (2002)CrossRefGoogle Scholar
  2. 2.
    Sampson D.D., Pendock G.J., Griffin R.A.: Photonic code-dividion multiple-access communications. Fiber Integr. Opt. 16(2), 129–157 (1997)CrossRefGoogle Scholar
  3. 3.
    Kitayama K., Wada N.: Photonic IP routing. IEEE Photon. Technol. Lett. 11(12), 1689–1691 (1999)CrossRefGoogle Scholar
  4. 4.
    Teh P.C., Petropoulos P., Ibsen M., Richardson D.J.: A comparative study of the performance of seven- and 63-chip optical code-division multiple-access encoders and decoders based on superstructured fiber Bragg gratings. J. Lightwave Technol. 19(9), 1352–1365 (2001)CrossRefGoogle Scholar
  5. 5.
    Wang X., Matsushima K., Kitayama K.: High-performance optical code generation and recognition by use of a 511-chip, 640-Gchip/s phase-shifted superstructured fiber Bragg grating. Opt. Lett. 30(4), 355–357 (2005)CrossRefGoogle Scholar
  6. 6.
    Chen X., Xia G., Huang D., Yuan X.: Experimental demonstration of 40 Gbit/s hybrid optical code-division multiplexing/wavelength-division multiplexing system. Opt. Eng. 46(11), 115006-(1)–115006-(4) (2007)Google Scholar
  7. 7.
    Kutsuzawa S., Oshiba S., Nishiki A., Kobayashi S., Iwamura H.: Phase-coding OCDM using fiber-Bragg-grating with enlarged signal pulse width, pp. 136–137. OFC 2003, Washington, DC (2003)Google Scholar
  8. 8.
    Wang X., Nishiki A., Kitayama K.: Improvement of the coding performance of SSFBG en/decoder by apodization technique. Microw. Opt. Technol. Lett. 43(3), 247–250 (2004)CrossRefGoogle Scholar
  9. 9.
    Amaya W., Pastor D., Capmany J.: Modeling of a time-spreading OCDMA system including nonperfect time gating, optical thresholding, and fully asynchronous signal/interference overlapping. IEEE/OSA J. Lightwave Technol. 26(7), 768–776 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.College of ScienceChina Three Gorges UniversityYichangChina
  2. 2.Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and TechnologyWuhanChina

Personalised recommendations