Photonic Network Communications

, Volume 17, Issue 3, pp 266–276 | Cite as

Joint routing and dimensioning of optical burst switching networks

  • Reinaldo Vallejos
  • Alejandra Zapata-Beghelli
  • Víctor Albornoz
  • Marco Tarifeño


Existing methods for handling routing and dimensioning in dynamic WDM networks solve the two problems separately. The main drawback of this approach is that a global minimum cost solution cannot be guaranteed. Given that wavelengths are costly resources, determining the minimum network cost is of fundamental importance. We propose an approach which jointly solves the routing and dimensioning problems in optical burst switching (OBS) networks, guaranteeing a target blocking per connection. The method finds the set of routes and the number of wavelengths per network link that minimise the total network cost. To accomplish this, an integer linear programming problem is solved. The proposed method was applied to ring networks, where the optimal solution achieves a reduction in the network cost of 10–40% (for traffic loads <0.4, compared to solving both problems separately). In the case of mesh topologies, to reduce the computational complexity of the method, we applied a variation of it which achieves a local minimum. Even so, a reduction of 5–20% (for traffic loads <0.4) in the network cost was obtained. This ability to lower network cost could make the proposed method the best choice to date for dynamic network operators.


Dynamic WDM networks Optical burst switching Integer programming Routing Dimensioning Wavelength requirements 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Odlyzko A.: Data networks are lightly utilized, and will stay that way. Rev. Netw. Econ. 2(3), 210–237 (2003)Google Scholar
  2. 2.
    Agrawal G.: Fiber-Optic Communication Systems. 3rd edn. Wiley-Interscience, New York (2002)Google Scholar
  3. 3.
    Simmons J.M.: Network design in realistic “all-optical” backbone networks. IEEE Commun. Mag. 44(11), 88–94 (2006)CrossRefGoogle Scholar
  4. 4.
    Post-deadline papers, in Proc. 33rd European Conference on Optical Communications (ECOC’07), Berlin, Germany (2007)Google Scholar
  5. 5.
    Baroni S., Bayvel P.: Wavelength requirements in arbitrarily connected wavelength-routed optical networks. IEEE/OSA J. Lightw. Technol. 5(2), 242–251 (1997)CrossRefGoogle Scholar
  6. 6.
    Elmirghani J., Moutfah H.T.: All-optical wavelength conversion: technologies and applications in DWDM networks. IEEE Commun. Mag. 38(3), 86–92 (2000)CrossRefGoogle Scholar
  7. 7.
    Assi C., Shami A., Ali M., Zhang Z., Liu X.: Impact of wavelength converters on the performance of optical networks. Opt. Netw. Mag. 3(2), 22–30 (2002)Google Scholar
  8. 8.
    Gerstel O., Raza H.: On the synergy between electrical and optical switching. IEEE Commun. Mag. 41(4), 98–104 (2003)CrossRefGoogle Scholar
  9. 9.
    Sengupta S., Kumar V., Saha D.: Switched optical backbone for cost-effective scalable core IP networks. IEEE Commun. Mag. 41(6), 60–70 (2003)CrossRefGoogle Scholar
  10. 10.
    Assi C., Shami A., Ali M.: Optical networking and real-time provisioning: an integrated vision for the next generation Internet. IEEE Netw. 15(4), 36–45 (2001)CrossRefGoogle Scholar
  11. 11.
    O’Mahony M.J., Simeonidou D., Hunter D.K., Tzanakaki A.: The application of optical packet switching in future communications networks. IEEE Commun. Mag. 39(3), 128–135 (2001)CrossRefGoogle Scholar
  12. 12.
    Qiao C., Yoo M.: Optical burst switching (OBS)—a new paradigm for an optical Internet. J. High Speed Netw. 8(1), 69–84 (1999)Google Scholar
  13. 13.
    Turner J.: Terabit burst switching. J. High Speed Netw. 8(1), 3–16 (1999)Google Scholar
  14. 14.
    Arakawa, S., Miyamoto, K., Murata, M., Miyahara, H.: Delay analyses of wavelength reservation methods for high speed burst transfer in photonic networks. In: Proc. APCC/OECC, vol. 1, Beijing, China, pp. 445–449 (1999)Google Scholar
  15. 15.
    Düser M., Bayvel P.: Analysis of a dynamically wavelength-routed optical burst switched network architecture. IEEE/OSA J. Lightw. Technol. 20(4), 574–585 (2002)CrossRefGoogle Scholar
  16. 16.
    Zapata A., de Miguel I., Dueser M., Spencer J., Bayvel P., Breuer D., Hanik N., Gladish A.: Next generation 100-Gigabit Metro Ethernet (100GbME) using multiwavelength optical rings. IEEE/OSA J. Lightw. Technol. [Special issue on Metro & Access Networks] 22(11), 2420–2434 (2004)Google Scholar
  17. 17.
    Yates J., Rumsewicz M.P.: Wavelength converters in dynamically-reconfigurable WDM networks. IEEE Commun. Surv. 2(2), 2–15 (1999)CrossRefGoogle Scholar
  18. 18.
    Zapata, A., Bayvel, P.: Dynamic vs. static wavelength-routed optical networks. IEEE/OSA J. Lightw. Technol., accepted (2008)Google Scholar
  19. 19.
    Li J., Mohan G., Chua K.C.: Dynamic load balancing in IP-over-WDM optical burst switching networks. Comput. Netw. 47(3), 393–408 (2005)MATHCrossRefGoogle Scholar
  20. 20.
    Späth J.: Dynamic routing and resource allocation in WDM transport networks. Comput. Netw. 32(5), 519–538 (2000)CrossRefGoogle Scholar
  21. 21.
    Zang H., Jue J., Mukherjee B.: A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks. Opt. Netw. Mag. 1(1), 47–60 (2000)Google Scholar
  22. 22.
    Gauger, C.M., Kohn, M., Zhang, J., Mukherjee, B.: Network performance of optical burst/packet switching: the impact of dimensioning, routing and contention resolution. In: Proc. ITG-Fachtgung Photonic Networks, Leipzig, Germany, pp. 1–8 (2005)Google Scholar
  23. 23.
    Van Parys, W., Van Caenegem, B., Demeester, P.: Reduction of blocking in arbitrary meshed WDM networks through a biased routing approach. In: Proc. OFC’98, San Jose, CA, USA, p. 94 (1998)Google Scholar
  24. 24.
    Teng J., Rouskas G.: Traffic engineering approach to path selection in optical burst switching networks. OSA J. Opt. Netw. 4, 759–777 (2005)CrossRefGoogle Scholar
  25. 25.
    Brunato M., Battiti R., Salvadori E.: Dynamic load balancing in WDM networks. Opt. Netw. Mag. 4(5), 7–20 (2003)Google Scholar
  26. 26.
    Narula-Tam A., Modiano E.: Dynamic load balancing in WDM packet networks with and without wavelength constraints. IEEE J. Sel. Areas Commun. 18(10), 1972–1979 (2000)CrossRefGoogle Scholar
  27. 27.
    Zapata, A., Bayvel, P.: Dynamic wavelength-routed optical burst switched networks: scalability analysis and comparison with static wavelength-routed optical networks. In: Proc. OFC2003, Atlanta, USA, vol. 1, pp. 212–213 (2003)Google Scholar
  28. 28.
    Teng, J., Rouskas, G.N.: Routing path optimization in optical burst switched networks. In: Proc. ONDM 2005, Milan, Italy, pp. 1–10 (2005)Google Scholar
  29. 29.
    Yu, J., Yamashita, I., Seikai, S., Kitayama, K.: Upgrade design of survivable wavelength-routed networks for increase of traffic loads. In: Proc. ONDM 2005, Milan, Italy, pp. 163–174 (2005)Google Scholar
  30. 30.
    Kozlovski, E., Düser, M., de Miguel, I., Bayvel, P.: Analysis of burst scheduling for dynamic wavelength assignment in optical burst switched networks. In: 14th Annual Meeting of the IEEE Lasers & Electro-Optics Society, LEOS 2001, San Diego, California, USA, paper TuD2 (2001)Google Scholar
  31. 31.
    Vallejos, R., Zapata, A., Aravena, M.: Fast and effective dimensioning algorithm for end to end optical burst switching networks with ON-OFF traffic model. Lecture Notes in Computer Science, vol. 4534, pp. 378–387. Springer, Berlin (2007)Google Scholar
  32. 32.
    Vallejos, R., Zapata, A., Albornoz, V.: Optimal routing for minimum wavelength requirements of end-to-end optical burst switching rings. Lecture Notes in Computer Science, vol. 4534, pp. 443–457. Springer, Berlin (2007)Google Scholar
  33. 33.
    Ramaswami R.: Optical networking technologies: what worked and what didn’t. IEEE Commun. Mag. 44(9), 132–139 (2006)CrossRefGoogle Scholar
  34. 34.
    Ge A., Callegati F., Tamil L.: On optical burst switching and self similar traffic. IEEE Commun. Lett. 4(3), 98–100 (2000)CrossRefGoogle Scholar
  35. 35.
    Hu, G., Dolzer, K., Gauger, C.: Does burst assembly really reduce the self-similarity? In: Proc. OFC2003, Atlanta, USA, pp. 124–125 (2003)Google Scholar
  36. 36.
    de Miguel, I., Düser, M., Bayvel, P.: Traffic load bounds for optical burst-switched networks with dynamic wavelength allocation. In: Proc. ONDM’01, Vienna, Austria, pp. 209–226 (2001)Google Scholar
  37. 37.
    Yu, X., Chen, Y., Qiao, C.: A study of traffic statistics of assembled burst traffic in optical burst switched networks. In: Proc. Opticomm’02, Boston, USA, pp. 149–159 (2002)Google Scholar
  38. 38.
    Ramaswami R., Sivarajan K.N.: Routing and wavelength assignment in all-optical networks. IEEE/ACM Trans. Netw. 3(5), 489–500 (1995)CrossRefGoogle Scholar
  39. 39.
    Vallejos R., Zapata A., Aravena M.: Fast blocking probability evaluation of end-to-end optical burst switching networks with non-uniform ON-OFF input traffic model. J. Photon. Netw. Commun. 13(2), 217–226 (2007)CrossRefGoogle Scholar
  40. 40.
    Rosberg, Z., Vu, H.L., Zukerman, M., White, J.: Blocking probabilities of optical burst switching networks based on reduced load fixed point approximations. In: Proc. IEEE INFOCOM’03, San Francisco, USA, vol. 3, pp. 2008–2018 (2003)Google Scholar
  41. 41.
    Fourer, R., Gay, D.M., Kernigham, B.W.: AMPL: A Modeling Language for Mathematical Programming, 2nd edn. Brooks/cole, Thompson Learning, Canada (2003)Google Scholar
  42. 42.
    Hunter D., Marcenac D.: Optimal mesh routing in four-fibre WDM rings. Electron. Lett. 34(8), 796–797 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Reinaldo Vallejos
    • 1
  • Alejandra Zapata-Beghelli
    • 1
  • Víctor Albornoz
    • 2
  • Marco Tarifeño
    • 1
  1. 1.Telematics Group, Electronic Engineering DepartmentUniversidad Técnica Federico Santa MaríaValparaísoChile
  2. 2.Industrial Engineering DepartmentUniversidad Técnica Federico Santa MaríaSantiagoChile

Personalised recommendations