Photonic Network Communications

, Volume 14, Issue 2, pp 183–197 | Cite as

Analysis of average burst-assembly delay and applications in proportional service differentiation

  • Pedro Reviriego
  • José Alberto Hernández
  • Javier Aracil


In Optical Burst-Switched (OBS) networks, the limitation of optical buffering devices make it impractical to deploy conventional delay-based differentiation algorithms such as Active Queue Management, Weighted Fair Queuing, etc. Furthermore, only the delay that appears due to the burst-assembly process constitutes a variable quantity (all the other sources of delay are mostly fixed), it is then reasonable to make use of the burst-assembly algorithm to provide class-based delay differentiation. The aim of the following study is twofold: first it defines an average assembly delay metric, which represents the assembly delay experienced by a random arrival at the burst assembler of an edge OBS node; and second, this metric is used to define and configure a two-class burst-assembly policy, which gives preference to high-priority traffic over low-priority packet arrivals. The results show that, (1) tuning the parameters of the two-class assembly algorithm, the two classes of traffic exhibit different burst-assembly delay; and, (2) such parameters can be adjusted to provide a given differentiation ratio in the light of the proportional QoS differentiation approach proposed in the literature. A detailed analysis of the two-class assembly algorithm is given, along with an exhaustive set of experiments and numerical examples that validate the equations derived.


Optical Burst Switching Size-based burst-assembly algorithm Average assembly delay Proportional delay-based service differentiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Turner J. (1999). Terabit burst switching. Journal of High Speed Networks 8: 3–16 Google Scholar
  2. 2.
    Qiao C., Yoo M. (1999). Optical Burst Switching (OBS) – A new paradigm for an optical Internet. Journal of High Speed Networks 8: 69–84 Google Scholar
  3. 3.
    Verma S., Chaskar H., Ravikanth R. (2000). Optical Burst Switching: A viable solution for terabit IP backbone. IEEE Network 14(6): 48–53 CrossRefGoogle Scholar
  4. 4.
    Xu L., Perros H. G., Rouskas G. (2001). Techniques for optical packet switching and optical burst switching. IEEE Communications Magazine 39: 136–142 CrossRefGoogle Scholar
  5. 5.
    Chen Y., Qiao C., Yu X. (2004). Optical Burst Switching: A new area in optical networking research. IEEE Network 18(3): 16–23 CrossRefGoogle Scholar
  6. 6.
    Vokkarane, V., Haridoss, K., Jue, J.P.: Threshold-based burst assembly policies for QoS support in optical burst-switched networks. In Proceedings of SPIE/IEEE OPTICOMM (pp. 125–136). Massachusetts: Boston (2002)Google Scholar
  7. 7.
    Ge A., Callegati F., Tamil L.S. (2000). On Optical Burst Switching and self-similar traffic. IEEE Communications Letters 4(3): 98–100 CrossRefGoogle Scholar
  8. 8.
    Cao, X., Li, J., Chen, Y., Qiao, C.: Assembling TCP/IP packets in Optical Burst Switched networks. In Proceedings of IEEE GLOBECOM, (pp. 2808– 2812). Taipei: Taiwan (2002)Google Scholar
  9. 9.
    Yu, X., Chen, Y., Qiao, C.: Study of traffic statistics of assembled burst traffic in optical burst switched networks. In Proceedings of SPIE/IEEE OPTICOM, (pp. 149–159). Boston: Massachusetts (2002)Google Scholar
  10. 10.
    Hernández, J. A., Aracil, J., López, V., López de Vergara, J.: On the analysis of burst-assembly delay in OBS networks and applications in delay-based service differentiation. Photonic Network Communications (to appear) (2007)Google Scholar
  11. 11.
    Chen Y., Qiao C., Hamdi M., Tsang D.H.K. (2003). Proportional differentiation: A scalable QoS approach. IEEE Communications Magazine, 41(6): 52–58 CrossRefGoogle Scholar
  12. 12.
    Zhang H. (1995). Service disciplines for guaranteed performance service in packet-switching networks. Proceedings of the IEEE 83(10): 1374–1396 CrossRefGoogle Scholar
  13. 13.
    Varma A., Stiliadis D. (1997). Hardware implementation of fair queuing algorithms for Asynchronous Transfer Mode networks. IEEE Communications Magazine 35: 74–80 CrossRefGoogle Scholar
  14. 14.
    Stiliadis D., Varma A. (1998). Efficient fair queueing algorithms for packet-switched networks. IEEE/ACM Transactions on Networking 6(2): 175–185 CrossRefGoogle Scholar
  15. 15.
    Yoo M., Qiao C., Dixit S. (2000). QoS performance of Optical Burst Switching in IP over WDM networks. IEEE Journal on Selected Areas in Communications 18: 2062–2071 CrossRefGoogle Scholar
  16. 16.
    Yoo M., Qiao C., Dixit S. (2001). Optical Burst switching for service differentiation in the Next-Generation Optical Internet. IEEE Communications Magazine 39(2): 98–104 CrossRefGoogle Scholar
  17. 17.
    Barakat N., Sargent E.H. (2005). Analytical modeling of offset-induced priority in multiclass OBS networks. IEEE Transactions on Communications, 53(8): 1343–1352 CrossRefGoogle Scholar
  18. 18.
    Farahmand F., Jue J.P. (2006). Analysis and implementation of look-ahead window contention resolution with QoS support in Optical Burst-Switched networks. IEEE Journal of Selected Areas in Communications 24(12): 81–93 CrossRefGoogle Scholar
  19. 19.
    Tan C.W., Mohan G., Lui J.C.-S. (2006). Achieving multi-class service differentiation in WDM Optical Burst Switching Networks: A probabilistic preemptive burst segmentation scheme. IEEE Journal of Selected Areas in Communications 24(12): 106–119 CrossRefGoogle Scholar
  20. 20.
    Liao W., Loi C.-H. (2004). Providing service differentiation for optical-burst-switched networks. IEEE/OSA Journal of Lightwave Technology 22(7): 1651–1660 CrossRefGoogle Scholar
  21. 21.
    Liu J., Ansari N., Ott T.J. (2003). FRR for latency reduction and QoS provisioning in OBS networks. IEEE Journal of Selected Areas in Communications 21(7): 1210–1219 CrossRefGoogle Scholar
  22. 22.
    Hernández, J. A., Aracil, J.: On the early release of Burst-Control Packets in Optical Burst Switched networks. In Proceedings of the international conference information networking, Estoril, Portugal (2007)Google Scholar
  23. 23.
    Karagiannis, T., Molle, M., Faloutsos, M., Broido, A.: A nonstationary Poisson view of Internet traffic. In IEEE INFOCOM, Vol. 3, (pp. 1558–1569). Honk Kong: PRC (2004)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Pedro Reviriego
    • 1
  • José Alberto Hernández
    • 2
  • Javier Aracil
    • 2
  1. 1.Ingeniería TelemáticaUniversidad Carlos III de MadridLeganés (Madrid)Spain
  2. 2.Ingeniería InformáticaUniversidad Autónoma de MadridMadridSpain

Personalised recommendations