Skip to main content

Advertisement

Log in

Post-Processing of NiTi Alloys: Issues and Challenges

  • EXCHANGE OF EXPERIENCE
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Nitinol (NiTi) exists in an equiatomic phase of Ni and Ti. Nitinol has growing applications in aerospace and medical industries due to its unique properties of pseudoelasticity, corrosion resistance, shape memory effect, and biocompatibility. NiTi can be produced by conventional and nonconventional manufacturing routes and its behavior can be modified by altering the composition, changing the porosity, and shape setting under varying thermal and mechanical treatment. After the fabrication, several post-processing operations are required on NiTi for desired application. This paper presents a brief on post-processing like machining, surface coating, and mechanical and thermal treatment for shape setting of NiTi alloys, and their issues and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. F. D. Whitcher, “Simulation of in vivo loading conditions of nitinol vascular stent structures,” Comput. Struct., 64, 1005–1011 (1997).

    Article  Google Scholar 

  2. M. Catauro, M. G. Raucci, M. A. Continenza, and A. Marotta, “Biocompatibility tests with fibroblasts of CaO rich calcium silicate glasses,” J. Mater. Sci., 39, 373–375 (2004).

    Article  Google Scholar 

  3. N. Sharma, T. Raj, and K. Kumar, “Applications of nickel titanium alloy,” J. Eng. Technol., 5, 1–7 (2015).

    Article  Google Scholar 

  4. L. S. Castleman, S. M. Motzkin, F. P. Alicandri, and V. L. Bonawit, “Biocompatibility of nitinol alloy as an implant material,” J. Biomed. Mater. Res., 10, 695–731 (1976).

    Article  Google Scholar 

  5. M. Es-Souni, M. Es-Souni, and H. F. Brandies, “Assessing the biocompatibility of NiTi shape memory alloys used for medical applications,” Anal. Bioanal. Chem., 381, 557–567 (2005).

    Article  Google Scholar 

  6. B. V. Krishna, S. Bose, and A. Bandyopadhyay, “Laser processing of net-shape NiTi shape memory alloy,” Metall. Mater. Trans. A, 38, 1096–1103 (2007).

    Article  Google Scholar 

  7. J. Y. Xiong, Y. C. Li, X. J. Wang, et al., “Titanium–nickel shape memory alloy foams for bone tissue engineering,” J. Mech. Behav. Biomed. Mater., 1, 269–273 (2008).

    Article  Google Scholar 

  8. N. Sharma, K. Kumar, and T. Raj, “Fabrication of NiTi alloys: a review,” Proc. Inst. Eng., Part L: J. Mater. Des. Appl.; doi: https://doi.org/10.1177/1464420715622494 (2015).

  9. H. C. Lin, K. M. Lin, and I. S. Cheng, “The electro-discharge machining characteristics of NiTi shape memory alloys,” J. Mater. Sci., 36, 399–404 (2001).

    Article  Google Scholar 

  10. H. C. Lin, K. M. Lin, and Y. C. Chen, “A study on the machining characteristics of TiNi shape memory alloys,” J. Mater. Proc. Technol., 105, 327–332 (2000).

    Article  Google Scholar 

  11. K. Weinert and V. Petzoldt, “Machining of NiTi based shape memory alloys,” Mater. Sci. Eng. A., 378, 180–184 (2004).

    Article  Google Scholar 

  12. M. Manjaiah, S. Narendranath, S. Basavarajappa, and V. N. Gaitonde, “Wire electric discharge machining characteristics of titanium nickel shape memory alloy,” Trans. Nonferrous Met. Soc. China, 24, 3201–3209 (2014).

    Article  Google Scholar 

  13. R. Piquard, A. Dacunto, P. Laheurte, and D. Dudzinski, “Micro-end milling of NiTi biomedical alloys, burr formation and phase transformation,” Precis. Eng., 38, 356–364 (2014).

    Article  Google Scholar 

  14. Y. Kaynak, H. E. Karaca, R. D. Noebe, and I. S. Jawahir, “Tool-wear analysis in cryogenic machining of NiTi shape memory alloys: a comparison of tool-wear performance with dry and MQL machining,” Wear, 306, 51–63 (2013).

    Article  Google Scholar 

  15. H. C. Lin, K. M. Lin, and Y. C. Chen, “A study on the machining characteristics of TiNi shape memory alloys,” J. Mater. Process. Technol., 105, 327–332 (2000).

    Article  Google Scholar 

  16. E. S. Lee, T. H. Shin, B. Y. Kim, and S. Y. Baek, “Investigation of short pulse electrochemical machining for groove process on Ni-Ti shape memory alloy,” Int. J. Prec. Eng. Manufac., 11, 113–118 (2010).

    Article  Google Scholar 

  17. L. Xu, Y. Pan, and C. Zhao, “Distance effects in electrochemical micromachining,” Scientific Reports, 6 (2016), Article number 31778; doi: https://doi.org/10.1038/srep31778.

  18. X. Ma, L. Zhang, G. Cao, et al., “Electrochemical micromachining of nitinol by confined-etchant-layer technique,” Electrochim. Acta,. 52, 4191–4196 (2007).

    Article  Google Scholar 

  19. M. C. Kong, D. Axinte, and W. Voice, “Challenges in using waterjet machining of NiTi shape memory alloys: an analysis of controlled-depth milling,” J. Mater. Process. Technol., 211, 959–971 (2011).

    Article  Google Scholar 

  20. M. Frotscher, F. Kahleyss, T. Simon, et al., “Achieving small structures in thin NiTi sheets for medical applications with water jet and micro machining: a comparison,” J. Mater. Eng. Perform., 15, 776–782 (2011).

    Article  Google Scholar 

  21. A. T. Tung, G. Niemeyer, B. Park, and D. H. Liang, “Laser-machined shape memory alloy actuators for active catheters,” ASME Trans. Mechatron., 12, 439–446 (2007).

    Article  Google Scholar 

  22. A. T. Tung, B. Park, and D. H. Liang, “Laser-machined shape memory alloy sensors for position feedback in active catheters,” Sens. Actuators A, 147, 83–92 (2008).

    Article  Google Scholar 

  23. R. Pfeifer, D. Herzog, M. Hustedt, and S. Barcikowski, “Nd:YAG laser cutting of NiTi shape memory alloys—influence of process parameters,” J. Mater. Proc. Technol., 210, 1918–1925 (2010).

    Article  Google Scholar 

  24. C. Li, S. Nikumb, and F. Wong, “An optimal process of femtosecond laser cutting of NiTi shape memory alloy for fabrication of miniature devices,” Opt. Lasers Eng., 44, 1078–1087 (2006).

    Article  Google Scholar 

  25. N. Sharma, T. Raj, and K. K. Kumar, “Parameter optimization and experimental study on wire electrical discharge machining of porous Ni40Ti60 alloy,” Proc. Inst. Eng. Part B J. Eng. Manuf., doi: https://doi.org/10.1177/0954405415577710 (2015).

  26. S. F. Hsieh, S. L. Chen, H. C. Lin, et al., “The machining characteristics and shape recovery ability of Ti–Ni–X (X = Zr, Cr) ternary shape memory alloys using the wire electro-discharge machining,” Int. J. Mach. Tools Manuf., 49, 509–514 (2009).

    Article  Google Scholar 

  27. M. P. Jahan, M. Rahman, and Y. S. Wong, “A review on the conventional and micro-electric discharge machining of tungsten carbide,” Int. J. Mach. Tools Manuf., 51, 837–859 (2011).

    Article  Google Scholar 

  28. W. Theisen and A. Schuermann, “Electro-discharge machining of nickel–titanium shape memory alloys,” Mater. Sci. Eng. A, 378, 200–204 (2004).

    Article  Google Scholar 

  29. H. Lin, K. Lin, Y. Chen, and C. Chu, “The wire electro-discharge machining characteristics of Fe–30Mn–6Si and Fe–30Mn–6Si–5Cr shape memory alloys,” J. Mater. Process. Technol., 161, 435–439 (2005).

    Article  Google Scholar 

  30. M. Manjaiah, S. Narendranath, and S. Basavarajappa, “Review on nonconventional machining of shape memory alloy,” Trans. Nonferrous Met. Soc. China, 24, 12–21 (2014).

    Article  Google Scholar 

  31. F. Klocke, D. Welling, and J. Dieckmanna, “Comparison of grinding and wire EDM concerning fatigue strength and surface integrity of machined Ti–6Al–4V components,” Procedia Eng., 19, 184–189 (2011).

    Article  Google Scholar 

  32. O. Yilmaz and M. A. Okka, “Effect of single and multi-channel electrodes application on EDM fast hole drilling performance,” Int. J. Adv. Manuf. Technol., 51, 185–194 (2010).

    Article  Google Scholar 

  33. E. S. Lee and T. H. Shin, “An evaluation of the machinability of nitinol shape memory alloy by electrochemical polishing,” J. Mech. Sci. Technol., 25, 963–969 (2011).

    Article  Google Scholar 

  34. S. L. Chen, S. F. Hsieh, H. C. Lin, et al., “Electrical discharge machining of TiNiCr and TiNiZr ternary shape memory alloys,” Mater. Sci. Eng. A, 445–446, 486–492 (2007).

    Article  Google Scholar 

  35. H. R. Sabouni and S. Daneshmand, “Investigation of the parameters of EDM process performed on smart NiTi alloy using graphite tools,” Life Sci. J., 9, 504–510 (2012).

  36. K. K. Jangra, “An experimental of multi-pass cutting operation in wire electrical discharge machining of WC–5.3% Co composite,” Int. J. Adv. Manuf. Technol., 76, 971–982 (2015).

    Article  Google Scholar 

  37. T. Zhao, Y. Li, Y. Liu, and X. Zhao, “Nanohardness, wear resistance and pseudoelasticity of hafnium implanted NiTi shape memory alloy,” J. Mech. Behav. Biomed. Mater., 13, 174–184 (2012).

    Article  Google Scholar 

  38. R. W. Y. Poon, J. P. Y. Ho, X. Liu, et al., “Improvements of anticorrosion and mechanical properties of NiTi orthopedic materials by acetylene, nitrogen and oxygen plasma immersion ion implantation,” Nucl. Instrum. Methods Phys. Res. B, 237, 411–416 (2005).

    Article  Google Scholar 

  39. R. W. Y. Poon, J. P. Y. Ho, X. Liu, et al., “Formation of titanium nitride barrier layer in nickel–titanium shape memory alloys by nitrogen plasma immersion ion implantation for better corrosion resistance,” Thin Sol. Films, 488, 20–25 (2005).

    Article  Google Scholar 

  40. L. Tan and W. C. Crone, “Surface characterization of NiTi modified by plasma source ion implantation,” Acta Mater., 50, 4449–4460 (2002).

    Article  Google Scholar 

  41. I. Mashal, L. Klinger, I. Gotman, and E. Y. Gutmanas, “Titanium nitride coating on nickel produced by a powder immersion reaction-assisted coating method,” Surf. Coat. Technol., 200, 3561–3566 (2006).

    Article  Google Scholar 

  42. S. Shabalovskaya, J. Anderegg, and J. V. Humbeeck, “Critical overview of nitinol surfaces and their modifications for medical applications,” Acta Biomater., 4, 447–467 (2008).

    Article  Google Scholar 

  43. D. Starosvetsky and I. Gotman, “Corrosion behavior of titanium nitride coated Ni–Ti shape memory surgical alloy,” Biomaterials, 22, 1853–1859 (2001).

    Article  Google Scholar 

  44. S. Jin, Y. Zhang, Q. Wang, et al., “Influence of TiN coating on the biocompatibility of medical NiTi alloy,” Colloids Surf. B Biointerfaces, 101, 343–349 (2013).

    Article  Google Scholar 

  45. Y. Yan, W. Yang, Y. Hu, et al., “Surface modification of NiTi alloy via a TiN coating functionalized with biomimic multilayer films,” Mater. Lett., 120, 155–158 (2014).

    Article  Google Scholar 

  46. J. Choi, D. Bogdanski, M. Köller, et al., “Calcium phosphate coating of nickel–titanium shape memory alloys, coating procedure and adherence of leukocytes and platelets,” Biomaterials, 24, 3689–3696 (2003).

    Article  Google Scholar 

  47. B. Bertheville, “Porous single-phase NiTi processed under Ca reducing vapor for use as a bone graft substitute,” Biomaterials, 27, 1246–1250 (2006).

    Article  Google Scholar 

  48. K. Endo, “Chemical modification of metallic implant surfaces with bio-functional proteins. I. Molecular structure and biological activity of a modified NiTi alloy surface,” Dent. Mater. J., 14, 185–198 (1995).

    Article  Google Scholar 

  49. B. O’Brien, W. M. Carroll, M. J. Kelly, “Passivation of nitinol wire for vascular implants—a demonstration of the benefits,” Biomaterials, 23, 1739–1748 (2002).

    Article  Google Scholar 

  50. Y. Oshida, R. Sachdeva, and S. Miyazaki, “Microanalytical characterization and surface modification of NiTi orthodontic arch wires,” J. Biomed. Mater. Eng., 2, 51–69 (1991).

    Google Scholar 

  51. Y. Cheng, W. Cai, H. T. Li, and Y. F. Zheng, “Surface modification of NiTi alloy with tantalum to improve its biocompatibility and radiopacity,” J. Mater. Sci., 41, 4961–4964 (2006).

    Article  Google Scholar 

  52. R. Boccaccini, C. Peters, J. A. Roether, et al., “Electrophoretic deposition of polyetheretherketone (PEEK) and PEEK/Bioglass® coatings on NiTi shape memory alloy wires,” J. Mater. Sci., 41, 8152–8159 (2006).

    Article  Google Scholar 

  53. Z. Bai, M. J. Filiaggi, and J. R. Dahn, “Fibrinogen adsorption onto 316L stainless steel, nitinol and titanium,” Surface Sci., 603, 839–846 (2009).

    Article  Google Scholar 

  54. D. Krause, B. Thomas, C. Leinenbach, et al., “The electrophoretic deposition of bioglass particles on stainless steel and nitinol substrates,” Surf. Coat. Technol., 200, 4835–4845 (2006).

    Article  Google Scholar 

  55. C. Y. Zheng, F. L. Nie, Y. F. Zheng, et al., “Enhanced corrosion resistance and cellular behavior of ultrafine-grained biomedical NiTi alloy with a novel SrO–SiO2–TiO2 sol–gel coating,” Appl. Surf. Sci., 257, 5913–5918 (2011).

    Article  Google Scholar 

  56. R. Bakhshi, A. Darbyshire, J. E. Evans, et al., “Polymeric coating of surface modified nitinol stent with POSS-nanocomposite polymer,” Colloids Surf. B: Biointerfaces, 86, 93–105 (2011).

    Article  Google Scholar 

  57. S. K. Wu, H. C. Lin, and Y. C. Yen, “A study on the wire drawing of TiNi shape memory alloys,” Mater. Sci. Eng. A, 215, 113–119 (1996).

    Article  Google Scholar 

  58. A. Christensen, A. Lippincott, and R. Kircher, Qualification of Electron Beam Melted (EBM) Ti6Al4VELI for Orthopaedic Implant Applications, Medical Modelling LLC, Golden, CO (2007).

    Google Scholar 

  59. T. Majid, Finite Element Analysis of Shape Memory Alloy Biomedical Devices, PhD Thesis, University of Toledo (2010), p. 234.

  60. J. Ryhanen, Biocompatibility Evaluation of Nickel–Titanium Shape Memory Metal Alloy, PhD Thesis, University of Oulu (1999), p. 118.

  61. C. L. Chu, J. C. Chung, and P. K. Chu, “Effects of heat treatment on characteristics of porous Ni-rich NiTi SMA prepared by SHS technique,” Transact. Nonferrous Met. Soc. China, 16, No. 1, 49–53 (2006).

    Article  Google Scholar 

  62. X. Liu, Y. Wang, D. Yang, and M. Qi, “The effect of ageing treatment on shape-setting and superelasticity of a NiTi stent,” Mater. Charact., 59, 402–406 (2008).

    Article  Google Scholar 

  63. K. W. K. Yeung, K. M. C. Cheung, W. W. Lu, and C. Y. Chung, “Optimization of thermal treatment parameters to alter austenitic phase transition temperature of NiTi alloy for medical implant,” Mater. Sci. Eng. A, 383, 213–218 (2004).

    Article  Google Scholar 

  64. M. Kubenová, J. Zálesák, J. Cermák, and A. Dlouhy, “Impact of hydrogen-assisted heat treatments on microstructure and transformation path in a Ni-rich NiTi shape memory alloy,” J. All. Compd., 577S, S287–S290 (2013).

    Article  Google Scholar 

  65. D. J. S. Ruth, K. Dhanalakshmi, and S. S. Nakshatharan, “Bidirectional angular control of an integrated sensor/actuator shape memory alloy based system,” Measurement, 69, 210–221 (2015).

    Article  Google Scholar 

  66. S. C. Weighardt, H. J. Maier, and Y. I. Chumlyakov, “Dependence of functional degradation on crystallographic orientation in NiTi shape memory alloys aged under stress,” J. All. Compd., 577S, S219–S221 (2013).

    Article  Google Scholar 

  67. S. Pittaccio and L. Garavaglia, “Electric resistance monitoring as a method for controlling shape memory alloy characteristics during shape settings in the furnace,” Mater. Sci. Eng. A, 599, 92–104 (2014).

    Article  Google Scholar 

  68. M. S. Shakeri and H. Aghajani, “Modeling of stress relaxation process, case study: Shape setting heat treatment of a Ni rich–NiTi alloy,” J. All. Compd., 574, 119–123 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sharma.

Additional information

Published in Poroshkovaya Metallurgiya, Vol. 56, Nos. 9–10 (517), pp. 144–157, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N., Kumar, K. & Kumar, V. Post-Processing of NiTi Alloys: Issues and Challenges. Powder Metall Met Ceram 56, 599–609 (2018). https://doi.org/10.1007/s11106-018-9933-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-018-9933-9

Keywords

Navigation