Advertisement

Powder Metallurgy and Metal Ceramics

, Volume 56, Issue 9–10, pp 599–609 | Cite as

Post-Processing of NiTi Alloys: Issues and Challenges

  • N. Sharma
  • K. Kumar
  • V. Kumar
EXCHANGE OF EXPERIENCE
  • 106 Downloads

Nitinol (NiTi) exists in an equiatomic phase of Ni and Ti. Nitinol has growing applications in aerospace and medical industries due to its unique properties of pseudoelasticity, corrosion resistance, shape memory effect, and biocompatibility. NiTi can be produced by conventional and nonconventional manufacturing routes and its behavior can be modified by altering the composition, changing the porosity, and shape setting under varying thermal and mechanical treatment. After the fabrication, several post-processing operations are required on NiTi for desired application. This paper presents a brief on post-processing like machining, surface coating, and mechanical and thermal treatment for shape setting of NiTi alloys, and their issues and challenges.

Keywords

nitinol (NiTi) shape memory alloy (SMA) post-processing machining surface coating heat treatment shape setting 

References

  1. 1.
    F. D. Whitcher, “Simulation of in vivo loading conditions of nitinol vascular stent structures,” Comput. Struct., 64, 1005–1011 (1997).CrossRefGoogle Scholar
  2. 2.
    M. Catauro, M. G. Raucci, M. A. Continenza, and A. Marotta, “Biocompatibility tests with fibroblasts of CaO rich calcium silicate glasses,” J. Mater. Sci., 39, 373–375 (2004).CrossRefGoogle Scholar
  3. 3.
    N. Sharma, T. Raj, and K. Kumar, “Applications of nickel titanium alloy,” J. Eng. Technol., 5, 1–7 (2015).CrossRefGoogle Scholar
  4. 4.
    L. S. Castleman, S. M. Motzkin, F. P. Alicandri, and V. L. Bonawit, “Biocompatibility of nitinol alloy as an implant material,” J. Biomed. Mater. Res., 10, 695–731 (1976).CrossRefGoogle Scholar
  5. 5.
    M. Es-Souni, M. Es-Souni, and H. F. Brandies, “Assessing the biocompatibility of NiTi shape memory alloys used for medical applications,” Anal. Bioanal. Chem., 381, 557–567 (2005).CrossRefGoogle Scholar
  6. 6.
    B. V. Krishna, S. Bose, and A. Bandyopadhyay, “Laser processing of net-shape NiTi shape memory alloy,” Metall. Mater. Trans. A, 38, 1096–1103 (2007).CrossRefGoogle Scholar
  7. 7.
    J. Y. Xiong, Y. C. Li, X. J. Wang, et al., “Titanium–nickel shape memory alloy foams for bone tissue engineering,” J. Mech. Behav. Biomed. Mater., 1, 269–273 (2008).CrossRefGoogle Scholar
  8. 8.
    N. Sharma, K. Kumar, and T. Raj, “Fabrication of NiTi alloys: a review,” Proc. Inst. Eng., Part L: J. Mater. Des. Appl.; doi:  https://doi.org/10.1177/1464420715622494 (2015).
  9. 9.
    H. C. Lin, K. M. Lin, and I. S. Cheng, “The electro-discharge machining characteristics of NiTi shape memory alloys,” J. Mater. Sci., 36, 399–404 (2001).CrossRefGoogle Scholar
  10. 10.
    H. C. Lin, K. M. Lin, and Y. C. Chen, “A study on the machining characteristics of TiNi shape memory alloys,” J. Mater. Proc. Technol., 105, 327–332 (2000).CrossRefGoogle Scholar
  11. 11.
    K. Weinert and V. Petzoldt, “Machining of NiTi based shape memory alloys,” Mater. Sci. Eng. A., 378, 180–184 (2004).CrossRefGoogle Scholar
  12. 12.
    M. Manjaiah, S. Narendranath, S. Basavarajappa, and V. N. Gaitonde, “Wire electric discharge machining characteristics of titanium nickel shape memory alloy,” Trans. Nonferrous Met. Soc. China, 24, 3201–3209 (2014).CrossRefGoogle Scholar
  13. 13.
    R. Piquard, A. Dacunto, P. Laheurte, and D. Dudzinski, “Micro-end milling of NiTi biomedical alloys, burr formation and phase transformation,” Precis. Eng., 38, 356–364 (2014).CrossRefGoogle Scholar
  14. 14.
    Y. Kaynak, H. E. Karaca, R. D. Noebe, and I. S. Jawahir, “Tool-wear analysis in cryogenic machining of NiTi shape memory alloys: a comparison of tool-wear performance with dry and MQL machining,” Wear, 306, 51–63 (2013).CrossRefGoogle Scholar
  15. 15.
    H. C. Lin, K. M. Lin, and Y. C. Chen, “A study on the machining characteristics of TiNi shape memory alloys,” J. Mater. Process. Technol., 105, 327–332 (2000).CrossRefGoogle Scholar
  16. 16.
    E. S. Lee, T. H. Shin, B. Y. Kim, and S. Y. Baek, “Investigation of short pulse electrochemical machining for groove process on Ni-Ti shape memory alloy,” Int. J. Prec. Eng. Manufac., 11, 113–118 (2010).CrossRefGoogle Scholar
  17. 17.
    L. Xu, Y. Pan, and C. Zhao, “Distance effects in electrochemical micromachining,” Scientific Reports, 6 (2016), Article number 31778; doi:  https://doi.org/10.1038/srep31778.
  18. 18.
    X. Ma, L. Zhang, G. Cao, et al., “Electrochemical micromachining of nitinol by confined-etchant-layer technique,” Electrochim. Acta,. 52, 4191–4196 (2007).CrossRefGoogle Scholar
  19. 19.
    M. C. Kong, D. Axinte, and W. Voice, “Challenges in using waterjet machining of NiTi shape memory alloys: an analysis of controlled-depth milling,” J. Mater. Process. Technol., 211, 959–971 (2011).CrossRefGoogle Scholar
  20. 20.
    M. Frotscher, F. Kahleyss, T. Simon, et al., “Achieving small structures in thin NiTi sheets for medical applications with water jet and micro machining: a comparison,” J. Mater. Eng. Perform., 15, 776–782 (2011).CrossRefGoogle Scholar
  21. 21.
    A. T. Tung, G. Niemeyer, B. Park, and D. H. Liang, “Laser-machined shape memory alloy actuators for active catheters,” ASME Trans. Mechatron., 12, 439–446 (2007).CrossRefGoogle Scholar
  22. 22.
    A. T. Tung, B. Park, and D. H. Liang, “Laser-machined shape memory alloy sensors for position feedback in active catheters,” Sens. Actuators A, 147, 83–92 (2008).CrossRefGoogle Scholar
  23. 23.
    R. Pfeifer, D. Herzog, M. Hustedt, and S. Barcikowski, “Nd:YAG laser cutting of NiTi shape memory alloys—influence of process parameters,” J. Mater. Proc. Technol., 210, 1918–1925 (2010).CrossRefGoogle Scholar
  24. 24.
    C. Li, S. Nikumb, and F. Wong, “An optimal process of femtosecond laser cutting of NiTi shape memory alloy for fabrication of miniature devices,” Opt. Lasers Eng., 44, 1078–1087 (2006).CrossRefGoogle Scholar
  25. 25.
    N. Sharma, T. Raj, and K. K. Kumar, “Parameter optimization and experimental study on wire electrical discharge machining of porous Ni40Ti60 alloy,” Proc. Inst. Eng. Part B J. Eng. Manuf., doi:  https://doi.org/10.1177/0954405415577710 (2015).
  26. 26.
    S. F. Hsieh, S. L. Chen, H. C. Lin, et al., “The machining characteristics and shape recovery ability of Ti–Ni–X (X = Zr, Cr) ternary shape memory alloys using the wire electro-discharge machining,” Int. J. Mach. Tools Manuf., 49, 509–514 (2009).CrossRefGoogle Scholar
  27. 27.
    M. P. Jahan, M. Rahman, and Y. S. Wong, “A review on the conventional and micro-electric discharge machining of tungsten carbide,” Int. J. Mach. Tools Manuf., 51, 837–859 (2011).CrossRefGoogle Scholar
  28. 28.
    W. Theisen and A. Schuermann, “Electro-discharge machining of nickel–titanium shape memory alloys,” Mater. Sci. Eng. A, 378, 200–204 (2004).CrossRefGoogle Scholar
  29. 29.
    H. Lin, K. Lin, Y. Chen, and C. Chu, “The wire electro-discharge machining characteristics of Fe–30Mn–6Si and Fe–30Mn–6Si–5Cr shape memory alloys,” J. Mater. Process. Technol., 161, 435–439 (2005).CrossRefGoogle Scholar
  30. 30.
    M. Manjaiah, S. Narendranath, and S. Basavarajappa, “Review on nonconventional machining of shape memory alloy,” Trans. Nonferrous Met. Soc. China, 24, 12–21 (2014).CrossRefGoogle Scholar
  31. 31.
    F. Klocke, D. Welling, and J. Dieckmanna, “Comparison of grinding and wire EDM concerning fatigue strength and surface integrity of machined Ti–6Al–4V components,” Procedia Eng., 19, 184–189 (2011).CrossRefGoogle Scholar
  32. 32.
    O. Yilmaz and M. A. Okka, “Effect of single and multi-channel electrodes application on EDM fast hole drilling performance,” Int. J. Adv. Manuf. Technol., 51, 185–194 (2010).CrossRefGoogle Scholar
  33. 33.
    E. S. Lee and T. H. Shin, “An evaluation of the machinability of nitinol shape memory alloy by electrochemical polishing,” J. Mech. Sci. Technol., 25, 963–969 (2011).CrossRefGoogle Scholar
  34. 34.
    S. L. Chen, S. F. Hsieh, H. C. Lin, et al., “Electrical discharge machining of TiNiCr and TiNiZr ternary shape memory alloys,” Mater. Sci. Eng. A, 445–446, 486–492 (2007).CrossRefGoogle Scholar
  35. 35.
    H. R. Sabouni and S. Daneshmand, “Investigation of the parameters of EDM process performed on smart NiTi alloy using graphite tools,” Life Sci. J., 9, 504–510 (2012).Google Scholar
  36. 36.
    K. K. Jangra, “An experimental of multi-pass cutting operation in wire electrical discharge machining of WC–5.3% Co composite,” Int. J. Adv. Manuf. Technol., 76, 971–982 (2015).CrossRefGoogle Scholar
  37. 37.
    T. Zhao, Y. Li, Y. Liu, and X. Zhao, “Nanohardness, wear resistance and pseudoelasticity of hafnium implanted NiTi shape memory alloy,” J. Mech. Behav. Biomed. Mater., 13, 174–184 (2012).CrossRefGoogle Scholar
  38. 38.
    R. W. Y. Poon, J. P. Y. Ho, X. Liu, et al., “Improvements of anticorrosion and mechanical properties of NiTi orthopedic materials by acetylene, nitrogen and oxygen plasma immersion ion implantation,” Nucl. Instrum. Methods Phys. Res. B, 237, 411–416 (2005).CrossRefGoogle Scholar
  39. 39.
    R. W. Y. Poon, J. P. Y. Ho, X. Liu, et al., “Formation of titanium nitride barrier layer in nickel–titanium shape memory alloys by nitrogen plasma immersion ion implantation for better corrosion resistance,” Thin Sol. Films, 488, 20–25 (2005).CrossRefGoogle Scholar
  40. 40.
    L. Tan and W. C. Crone, “Surface characterization of NiTi modified by plasma source ion implantation,” Acta Mater., 50, 4449–4460 (2002).CrossRefGoogle Scholar
  41. 41.
    I. Mashal, L. Klinger, I. Gotman, and E. Y. Gutmanas, “Titanium nitride coating on nickel produced by a powder immersion reaction-assisted coating method,” Surf. Coat. Technol., 200, 3561–3566 (2006).CrossRefGoogle Scholar
  42. 42.
    S. Shabalovskaya, J. Anderegg, and J. V. Humbeeck, “Critical overview of nitinol surfaces and their modifications for medical applications,” Acta Biomater., 4, 447–467 (2008).CrossRefGoogle Scholar
  43. 43.
    D. Starosvetsky and I. Gotman, “Corrosion behavior of titanium nitride coated Ni–Ti shape memory surgical alloy,” Biomaterials, 22, 1853–1859 (2001).CrossRefGoogle Scholar
  44. 44.
    S. Jin, Y. Zhang, Q. Wang, et al., “Influence of TiN coating on the biocompatibility of medical NiTi alloy,” Colloids Surf. B Biointerfaces, 101, 343–349 (2013).CrossRefGoogle Scholar
  45. 45.
    Y. Yan, W. Yang, Y. Hu, et al., “Surface modification of NiTi alloy via a TiN coating functionalized with biomimic multilayer films,” Mater. Lett., 120, 155–158 (2014).CrossRefGoogle Scholar
  46. 46.
    J. Choi, D. Bogdanski, M. Köller, et al., “Calcium phosphate coating of nickel–titanium shape memory alloys, coating procedure and adherence of leukocytes and platelets,” Biomaterials, 24, 3689–3696 (2003).CrossRefGoogle Scholar
  47. 47.
    B. Bertheville, “Porous single-phase NiTi processed under Ca reducing vapor for use as a bone graft substitute,” Biomaterials, 27, 1246–1250 (2006).CrossRefGoogle Scholar
  48. 48.
    K. Endo, “Chemical modification of metallic implant surfaces with bio-functional proteins. I. Molecular structure and biological activity of a modified NiTi alloy surface,” Dent. Mater. J., 14, 185–198 (1995).CrossRefGoogle Scholar
  49. 49.
    B. O’Brien, W. M. Carroll, M. J. Kelly, “Passivation of nitinol wire for vascular implants—a demonstration of the benefits,” Biomaterials, 23, 1739–1748 (2002).CrossRefGoogle Scholar
  50. 50.
    Y. Oshida, R. Sachdeva, and S. Miyazaki, “Microanalytical characterization and surface modification of NiTi orthodontic arch wires,” J. Biomed. Mater. Eng., 2, 51–69 (1991).Google Scholar
  51. 51.
    Y. Cheng, W. Cai, H. T. Li, and Y. F. Zheng, “Surface modification of NiTi alloy with tantalum to improve its biocompatibility and radiopacity,” J. Mater. Sci., 41, 4961–4964 (2006).CrossRefGoogle Scholar
  52. 52.
    R. Boccaccini, C. Peters, J. A. Roether, et al., “Electrophoretic deposition of polyetheretherketone (PEEK) and PEEK/Bioglass® coatings on NiTi shape memory alloy wires,” J. Mater. Sci., 41, 8152–8159 (2006).CrossRefGoogle Scholar
  53. 53.
    Z. Bai, M. J. Filiaggi, and J. R. Dahn, “Fibrinogen adsorption onto 316L stainless steel, nitinol and titanium,” Surface Sci., 603, 839–846 (2009).CrossRefGoogle Scholar
  54. 54.
    D. Krause, B. Thomas, C. Leinenbach, et al., “The electrophoretic deposition of bioglass particles on stainless steel and nitinol substrates,” Surf. Coat. Technol., 200, 4835–4845 (2006).CrossRefGoogle Scholar
  55. 55.
    C. Y. Zheng, F. L. Nie, Y. F. Zheng, et al., “Enhanced corrosion resistance and cellular behavior of ultrafine-grained biomedical NiTi alloy with a novel SrO–SiO2–TiO2 sol–gel coating,” Appl. Surf. Sci., 257, 5913–5918 (2011).CrossRefGoogle Scholar
  56. 56.
    R. Bakhshi, A. Darbyshire, J. E. Evans, et al., “Polymeric coating of surface modified nitinol stent with POSS-nanocomposite polymer,” Colloids Surf. B: Biointerfaces, 86, 93–105 (2011).CrossRefGoogle Scholar
  57. 57.
    S. K. Wu, H. C. Lin, and Y. C. Yen, “A study on the wire drawing of TiNi shape memory alloys,” Mater. Sci. Eng. A, 215, 113–119 (1996).CrossRefGoogle Scholar
  58. 58.
    A. Christensen, A. Lippincott, and R. Kircher, Qualification of Electron Beam Melted (EBM) Ti6Al4VELI for Orthopaedic Implant Applications, Medical Modelling LLC, Golden, CO (2007).Google Scholar
  59. 59.
    T. Majid, Finite Element Analysis of Shape Memory Alloy Biomedical Devices, PhD Thesis, University of Toledo (2010), p. 234.Google Scholar
  60. 60.
    J. Ryhanen, Biocompatibility Evaluation of Nickel–Titanium Shape Memory Metal Alloy, PhD Thesis, University of Oulu (1999), p. 118.Google Scholar
  61. 61.
    C. L. Chu, J. C. Chung, and P. K. Chu, “Effects of heat treatment on characteristics of porous Ni-rich NiTi SMA prepared by SHS technique,” Transact. Nonferrous Met. Soc. China, 16, No. 1, 49–53 (2006).CrossRefGoogle Scholar
  62. 62.
    X. Liu, Y. Wang, D. Yang, and M. Qi, “The effect of ageing treatment on shape-setting and superelasticity of a NiTi stent,” Mater. Charact., 59, 402–406 (2008).CrossRefGoogle Scholar
  63. 63.
    K. W. K. Yeung, K. M. C. Cheung, W. W. Lu, and C. Y. Chung, “Optimization of thermal treatment parameters to alter austenitic phase transition temperature of NiTi alloy for medical implant,” Mater. Sci. Eng. A, 383, 213–218 (2004).CrossRefGoogle Scholar
  64. 64.
    M. Kubenová, J. Zálesák, J. Cermák, and A. Dlouhy, “Impact of hydrogen-assisted heat treatments on microstructure and transformation path in a Ni-rich NiTi shape memory alloy,” J. All. Compd., 577S, S287–S290 (2013).CrossRefGoogle Scholar
  65. 65.
    D. J. S. Ruth, K. Dhanalakshmi, and S. S. Nakshatharan, “Bidirectional angular control of an integrated sensor/actuator shape memory alloy based system,” Measurement, 69, 210–221 (2015).CrossRefGoogle Scholar
  66. 66.
    S. C. Weighardt, H. J. Maier, and Y. I. Chumlyakov, “Dependence of functional degradation on crystallographic orientation in NiTi shape memory alloys aged under stress,” J. All. Compd., 577S, S219–S221 (2013).CrossRefGoogle Scholar
  67. 67.
    S. Pittaccio and L. Garavaglia, “Electric resistance monitoring as a method for controlling shape memory alloy characteristics during shape settings in the furnace,” Mater. Sci. Eng. A, 599, 92–104 (2014).CrossRefGoogle Scholar
  68. 68.
    M. S. Shakeri and H. Aghajani, “Modeling of stress relaxation process, case study: Shape setting heat treatment of a Ni rich–NiTi alloy,” J. All. Compd., 574, 119–123 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringMaharishi Markandeswar UniversityMullanaIndia
  2. 2.Department of Mechanical EngineeringPEC University of TechnologyChandigarhIndia
  3. 3.Department of Mechanical EngineeringCGC College of EngineeringLandranIndia

Personalised recommendations