Advertisement

Powder Metallurgy and Metal Ceramics

, Volume 56, Issue 9–10, pp 573–580 | Cite as

Behavior of Ultrahigh-Temperature ZrB2-Based Ceramics in Oxidation

  • O. N. Grigoriev
  • I. P. Neshpor
  • T. V. Mosina
  • V. B. Vinokurov
  • A. V. Koroteev
  • O. V. Buriachek
  • D. V. Vedel
  • A. N. Stepanchuk
  • L. Silvestroni
Article

Ultrahigh-temperature ZrB2-based ceramics with different sintering additions was developed for extreme conditions. Its strength characteristics, phase composition, and structure were examined. The ceramics was oxidized in air at 1250 and 1550°C. In addition, the most stable composites were subjected to temperature cycling in a flow of aviation fuel combustion products in a temperature range of 1400–1500°C. All materials show high oxidation resistance. The method used to produce samples influences their oxidation behavior: materials produced by vacuum hot pressing show higher oxidation resistance than those produced by hot pressing in a CO–CO2 atmosphere, probably because of their higher final density. The best results were obtained when ZrB2 sintering was combined with introduction of MoSi2 and CrB2.

Keywords

oxidation ultrahigh-temperature ceramics zirconium diboride temperature cycling test 

References

  1. 1.
    Shu-Qi Guo, “Densification of ZrB2-based composites and their mechanical and physical properties: A review,” J. Eur. Ceram. Soc., 29, 995–1011 (2009).Google Scholar
  2. 2.
    F. Monteverde and A. Bellosi, “Oxidation of ZrB2-based ceramics in dry air,” J. Electrochem. Soc., 150, 552–559 (2003).CrossRefGoogle Scholar
  3. 3.
    Hu Ping, Zhang Xing-Hong, and Han Jie-Cai, “Effect of various additives on the oxidation behavior of ZrB2-based ultrahigh-temperature ceramics at 1800°C,” J. Am. Ceram. Soc., 93, Issue 2, 345–349 (2010).Google Scholar
  4. 4.
    O. N. Grigoriev, B. A. Galanov, V. A. Lavrenko, et al., “Oxidation of ZrB2–SiC–ZrSi2 ceramics in oxygen,” J. Eur. Ceram. Soc., 30, 2397–2405 (2010).CrossRefGoogle Scholar
  5. 5.
    J. F. Justin and A. Jankowiak, “Ultrahigh-temperature ceramics: densification, properties and thermal stability,” J. Aerosp. Lab., 3, 1–10 (2011).Google Scholar
  6. 6.
    D. Sciti, R. Savino, and L. Silvestroni, “Aerothermal behavior of a SiC fiber-reinforced ZrB2 sharp component in supersonic regime,” J. Eur. Ceram. Soc., 32, 1837–1845 (2012).CrossRefGoogle Scholar
  7. 7.
    V. O. Lavrenko, A. D. Panasyuk, O. M. Grigoriev, et al., “High-temperature (to 1600°C) oxidation of ZrB2–MoSi2 ceramics in air,” Powder Metall. Met. Ceram., 51, No. 1–2, 102–107 (2012).Google Scholar
  8. 8.
    O. N. Grigoriev, G. A. Frolov, U. I. Evdokimenko, et al., “Ultrahigh temperature ceramics behavior under the impact of concentrated solar radiation, oxidation and erosion in gas flows,” in: Space Investigations in Ukraine 2014, Akademperiodyka, Kyiv (2014), pp. 126–132.Google Scholar
  9. 9.
    T. V. Mosina, I. P. Neshpor, O. M. Grigoriev, et al., “Corrosion resistance of ultrahigh-temperature zirconium boride ceramics under concentrated solar radiation,” Powder Metall. Met. Ceram., 54, No. 3–4, 189–193 (2015).CrossRefGoogle Scholar
  10. 10.
    A. Kaiser, M. Lobert, and R. Telle, “Thermal stability of zircon (ZrSiO4),” J. Eur. Ceram. Soc., 28, 2199–2211 (2008).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • O. N. Grigoriev
    • 1
  • I. P. Neshpor
    • 1
  • T. V. Mosina
    • 1
  • V. B. Vinokurov
    • 1
  • A. V. Koroteev
    • 1
  • O. V. Buriachek
    • 2
  • D. V. Vedel
    • 3
  • A. N. Stepanchuk
    • 3
  • L. Silvestroni
    • 4
  1. 1.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKyivUkraine
  2. 2.Ivchenko-Progress Machine-Building Design OfficeZaporizhzhiaUkraine
  3. 3.National Technical University “Igor Sikorsky Kyiv Polytechnic Institute”KyivUkraine
  4. 4.Institute of Science and Technology for CeramicsFaenzaItaly

Personalised recommendations