Skip to main content
Log in

Thermochemical Properties of Binary Ba–In Alloys

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The thermochemical properties of binary Ba–In melts were studied using calorimetry at 1070–1320 K over a wide composition range. It is shown that these melts are characterized by significant exothermic heat effects of mixing. The ideal associated solution model was used to calculate the activities of components, Gibbs energies, and mixing entropies of the alloys and to construct the liquidus curve in the phase diagram. These parameters agree with the literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. A. A. Luo, “Recent magnesium alloy development for elevated temperature applications,” Int. Mater. Rev., 49, No. 1, 13–30 (2004).

    Article  Google Scholar 

  2. B. S. You, W. W. Park, and I. S. Chung, “The effect of calcium additions on the oxidation behavior in magnesium alloys,” Scr. Mater., 42, No. 11, 1089–1094 (2000).

    Article  Google Scholar 

  3. C. L. Mendis, C. J. Bettles, M. A. Gibson, et al., “Refinement of precipitate distributions in an agehardenable Mg–Sn alloy through microalloying,” Philos. Mag. Lett., 86, No. 7, 443–456 (2006).

    Article  Google Scholar 

  4. A. Becerra and M. Pekguleryuz, “Effects of zinc, lithium, and indium on the grain size of magnesium,” J. Mater. Res., 24, No. 5, 1722–1729 (2009).

    Article  Google Scholar 

  5. D. Bradwell, G. Ceder, L. Ortiz, and D. R. Sadoway, Patent US 9076996B2, Liquid Electrode Battery, Massachusetts Institute of Technology, USA (2015).

    Google Scholar 

  6. G. Bruzzone, “The binary systems Sr–In and Ba–In,” J. Less-Common Met., 11, 249–258 (1966).

    Article  Google Scholar 

  7. J. Delcet and J. J. Egan, “Thermodynamics of liquid Ca–Ag and Ca–In alloys,” J. Less-Common Met., 59, 229–236 (1978).

    Article  Google Scholar 

  8. L. Wang, Y. Liu, and J. Liu, “Thermodynamic basis and related phase equilibria for In–Na and In–Ca systems,” J. Phase Equilib. Diffus., 34, No. 6, 447–452 (2013).

    Article  Google Scholar 

  9. S. Qin, S. Liu, C. Zhang, et al., “Thermodynamic modeling of the Ca–In and Ca–Sb systems supported with first-principles calculations,” CALPHAD, 48, 35–42 (2015).

    Article  Google Scholar 

  10. M. L. Fornasini, “Ca8In3, a structure related to the BiF3 type,” Acta Crystallogr. C: Cryst. Struct. Commun., 43, 613–616 (1987).

    Article  Google Scholar 

  11. R. E. Marsh and K. M. Slagle, “On the structure of Ca8In3,” Acta Crystallogr. C: Cryst. Struct. Commun., 44, 395–396 (1988).

    Article  Google Scholar 

  12. A. M. Golubev, “Fluorite-like aspect of crystallographic structures of Ca8In3 and Mg5Ga2,” Kristallografiya, 34, No. 6, 1457–1460 (1989).

    Google Scholar 

  13. M. Wendorff and C. Röhr, “New binary indides rich in alkaline earth metals: Ca2In, Sr28In11 and Sr5In3,” Z. Naturforsch. B, 59, 619–628 (2004).

    Google Scholar 

  14. T. B. Masalsky (ed.), P. R. Subramanian, H. Okamoto, et al., Binary Alloy Phase Diagrams, 2nd ed., ASM International, Metals Park, Ohio (1990), p. 589.

  15. H. Okamoto, “The Ca–In (calcium–indium) system,” J. Phase Equilib., 12, No. 3, 379–383 (1991).

    Article  Google Scholar 

  16. A. K. Niessen, F. R. de Boer, R. Boom, et al., “Model predictions for the enthalpy of formation of transition metal alloys,” CALPHAD, 7, No. 1, 51–70 (1983).

    Article  Google Scholar 

  17. F. R. de Boer, R. Boom, W. C. M. Mattens, et al., “Cohesion in metals. Transition metal alloys,” in: F. R. de Boer and D. G. Pettifor (eds.), Cohesion and Structure Series, North-Holland, Amsterdam (1988), p. 758.

    Google Scholar 

  18. M. Ivanov, V. Berezutski, and N. Usenko, “Mixing enthalpies in liquid alloys of manganese with the lanthanides,” J. Mater. Res., 102, 277 (2011).

    Google Scholar 

  19. A. T. Dinsdale, “SGTE data for pure elements,” CALPHAD, 15, No. 4, 319 (1991).

    Article  Google Scholar 

  20. D. R. Lide (ed.), CRC Handbook of Chemistry and Physics, 90th Edition (CD-ROM Version 2010), Taylor and Francis Group, p. 2804.

  21. V. G. Kudin, M. A. Shevchenko, I. V. Mateiko, and V. S. Sudavtsova, “Thermodynamic properties of Al– La melts,” Zh. Fiz. Khim., 87, No. 3, 364–370 (2013).

    Google Scholar 

  22. M. A. Shevchenko, M. I. Ivanov, V. V. Berezutsky, et al., “Thermodynamic properties of Ni–Sc and Ni–Y alloys,” Zh. Fiz. Khim., 88, No. 6, 909–914 (2014).

    Google Scholar 

  23. V. S. Sudavtsova, M. A. Shevchenko, V. V. Berezutsky, et al., “Thermodynamic properties of binary Ag(Au)–Sm melts,” Zh. Fiz. Khim., 88, No. 2, 209–215 (2014).

    Google Scholar 

  24. M. A. Shevchenko, V. G. Kudin, and V. S. Sudavtsova, “Correctness of thermodynamic properties of binary alloys calculated with the ideal associated solution model,” in: Modern Problems of Physical Materials Science (Collected Papers), Inst. Probl. Materialoved. NAN Ukrainy, Kyiv (2012), Issue 21, p. 67.

  25. G. Kaptay, “On the tendency of solutions to tend towards ideal solutions at high temperatures,” Metall. Mater. Trans. A, 43, 531–543 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Shevchenko.

Additional information

V. V. Berezutskii is deceased.

Translated from Poroshkovaya Metallurgiya, Vol. 56, Nos. 9–10 (517), pp. 88–100, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, M.A., Kudin, V.G., Ivanov, M.I. et al. Thermochemical Properties of Binary Ba–In Alloys. Powder Metall Met Ceram 56, 556–566 (2018). https://doi.org/10.1007/s11106-018-9928-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-018-9928-6

Keywords

Navigation