Advertisement

Finite-Element Optimization of the Asymmetric Rolling Process for Titanium Powder

  • I. Yu. Prikhod’ko
  • M. A. Dedik
  • K. A. Gogaev
  • V. S. Voropaev
  • A. I. Itsenko
Article

The selection of resistance-to-deformation model is analyzed and justified. The results of mathematical modeling for the asymmetric rolling of titanium powder using the finite-element method are demonstrated.

Keywords

asymmetric rolling titanium powder mathematical modeling finite-element method 

References

  1. 1.
    G. A. Vinogradov and V. P. Katashinskii, Theory of Sheet Rolling of Powders and Granules [in Russian], Metallurgiya, Moscow (1979), p.224.Google Scholar
  2. 2.
    G. A. Vinogradov, Yu. N. Semenov, O. A. Katrus, and V. P. Katashinskii, Rolling of Metal Powders [in Russian], Metallurgiya, Moscow (1969), p.382.Google Scholar
  3. 3.
    G. I. Aksenov, V. G. Khromov, and A. N. Nikolaev, “Rolling of titanium powder into thin strip by method developed at the Gorky Polytechnical Institute,” Titan Splavy, No. 3, 152–158 (1960).Google Scholar
  4. 4.
    L. S. Shmelev and V. K. Sorokin, “Industrial production of sheet titanium by powder rolling,” Tsvet. Metally, No. 10, 49–50 (1993).Google Scholar
  5. 5.
    K. A. Gogaev, G. Ya. Kalutskii, and V. S. Voropaev, “Asymmetric rolling of metal powders. I. Compactability of metal powders in asymmetric rolling,” Powder Metall. Met. Ceram., 48, Nos. 3–4, 152–156 (2009).Google Scholar
  6. 6.
    K. A. Gogaev, G. Ya. Kalutskii, and V. S. Voropaev, “Features and technological parameters of asymmetrical rolling of metal powders,” Vest. NTU Ukrainy “Kyiv Politekh. Inst., Series Mashinobud., No. 60, 89–93 (2010).Google Scholar
  7. 7.
    K. A. Gogaev, G. Ya. Kalutskii, and V. S. Voropaev, “Asymmetric rolling of metal powders. II. Angular parameters of asymmetric rolling,” Powder Metall. Met. Ceram., 48, Nos. 5–6, 274–278 (2009).Google Scholar
  8. 8.
    K. A. Gogaev, V. S. Voropaev, Yu. N. Podrezov, et al., “Hardening of compact and porous titanium in asymmetric rolling,” Powder Metall. Met. Ceram., 46, Nos. 1–2, 12–17, (2007).Google Scholar
  9. 9.
    K. A. Gogaev, V. A. Nazarenko, V. S. Voropaev, et al., “Mechanical properties of powder titanium at different production stages. V. Properties of a titanium strip produced by powder rolling,” Powder Metall. Met. Ceram., 48, Nos. 11–12, 652–658 (2009).Google Scholar
  10. 10.
    K. A. Gogaev, V. S. Voropaev, G. Ya. Kalutskii, and Yu. N. Podrezov, “Production of titanium powder sheets by asymmetric rolling,” Powder Metall. Met. Ceram., 51, Nos. 9–10, 509–517, (2012).Google Scholar
  11. 11.
    G. A. Libenson, V. Yu. Lopatin, and G. V. Komarnitskii, Powder Metallurgy Processes: Handbook [in Russian], Mosk. Instit. Slal. Splav., Moscow (2002), p. 688.Google Scholar
  12. 12.
    D. C. Drucker, “Soil mechanics and hardening theories of plasticity,” Am. Soc. Civil Engin. (ASCE) Transaction, 122, 338–346 (1957).Google Scholar
  13. 13.
    F. L. DiMaggio and I. S. Sandler, “Material model for granular soils,” J. Eng. Mech. Div., 97, 935–950 (1971).Google Scholar
  14. 14.
    O. Coube and H. Riedel, “Numerical simulation of metal powder die compaction with special consideration of cracking,” Powder Metall., 43, No. 2, 123–131 (2000).CrossRefGoogle Scholar
  15. 15.
    A. F. Fossum and R. M. Brannon, The Sandia Geomodel: Theory and User’s Guide, Sandia Report. Sandia National Laboratories, Albuquerque (2004), p. 158.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • I. Yu. Prikhod’ko
    • 1
  • M. A. Dedik
    • 1
  • K. A. Gogaev
    • 2
  • V. S. Voropaev
    • 2
  • A. I. Itsenko
    • 2
  1. 1.Nekrasov Ferrous Metallurgy InstituteNational Academy of Sciences of UkraineDnepropetrovskUkraine
  2. 2.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations