Advertisement

Powder Metallurgy and Metal Ceramics

, Volume 54, Issue 11–12, pp 738–745 | Cite as

Thermally Activated Processes of the Phase Composition and Structure Formation of the Nanoscaled Co–Sb Films

  • R. A. Shkarban
  • Ya. S. Peresunko
  • E. P. Pavlova
  • S. I. Sidorenko
  • A. Csik
  • Yu. N. Makogon
STRUCTURAL MATERIALS RESEARCH

It is investigated the formation of the phase composition and structure in the nanoscaled CoSbx (30 nm) (1.82 ≤ x ≤ 4.16) films deposited by the method of molecular-beam epitaxy on the substrates of the oxidated monocrystalline silicon at 200°C and following thermal treatment in vacuum in temperature range of 300–700°C. It is established that the films after the deposition are polycrystalline without texture. With increase in Sb content the formation of the phase composition in the films takes place in such sequence as this is provided by phase diagram for the bulky state of the Co–Sb system. At annealing in vacuum at temperature above 450–500°C a sublimation not only of the crystalline Sb phase but from the antimonides occurs. This is reflected on the phase composition change by following chemical reactions: \( {\mathrm{CoSb}}_2\overset{600{}^{\circ}\mathrm{C}}{\to}\mathrm{S}\mathrm{b}\uparrow =\mathrm{CoSb},{\mathrm{CoSb}}_3\overset{600{}^{\circ}\mathrm{C}}{\to}\mathrm{S}\mathrm{b}\uparrow ={\mathrm{CoSb}}_2,{\mathrm{CoSb}}_3+\mathrm{S}\mathrm{b}\uparrow \overset{600{}^{\circ}\mathrm{C}}{\to }{\mathrm{CoSb}}_3 \) and leads to increase in amount of the CoSb and CoSb2 phases and decrease in amount of the CoSb3. CoSbx (30 nm) (1.8 < x < 4.16) films under investigation are thermostable up to ~350°C.

Keywords

skutterudite CoSb3 nanoscaled film sublimation phase transformation 

Notes

Acknowledgments

The authors would like to thank Prof. M. Albrecht, Dr. G. Beddies, PhD M. Daniel, and workers from Chemnitz University of Technology (Germany) for sample preparation, assistance in conduction of investigations and discussion of results.

This work was financially supported by the Deutsche Akademischer Austauschdienst (DAAD) in the frame of the Leonard-Euler-Program (Grant N 50744282).

References

  1. 1.
    G. A. Slack and D. M. Rowe (Ed.), Thermoelectrics, Handbook, CRC, Boca Ration (1995), p. 407.Google Scholar
  2. 2.
    P. Lu, Q. Ma, Yu. Li, and X. Hu, “A study of electronic structure and lattice dynamics of CoSb3 skutterudite,” J. Magnet. Magn. Mater., 322, 3080–3083 (2010).CrossRefGoogle Scholar
  3. 3.
    X. Yang, P. Zhai, L. Liu, and Q. Zhang, “Thermodynamic and mechanical properties of crystalline CoSb3: A molecular dynamics simulation study,” J. Appl. Phys., 109, 123517 (2011).CrossRefGoogle Scholar
  4. 4.
    R. Liu, X. Chen, P. Qiu, et al., “Low thermal conductivity and enhanced thermoelectric performance of Gdfilled skutterudites,” J. Appl. Phys., 109, 023719-20–023719-29 (2011).Google Scholar
  5. 5.
    J. Mi, M. Christensen, E. Nishibori, and B. Iversen, “Multitemperature crystal structures and physical properties of the partially filled thermoelectric skutterudites M0.1Co4Sb12 (M = La, Ce, Nd, Sm, Yb, and Eu),” Phys. Review B, 84, 064114-1–064114-12 (2011).CrossRefGoogle Scholar
  6. 6.
    J. Zhang, B. Xu, and L. Wang, “Great thermoelectric power factor enhancement of CoSb3 through the lightest metal element filling,” Appl. Phys. Letters, 98, 072109-16–072109-24 (2011).Google Scholar
  7. 7.
    M. Wilczyski, “Thermopower, figure of merit and spin-transfer torque induced by the temperature gradient in planar tunnel junctions,” J. Phys.: Condens. Matter., 23, 456001-1–456001-12 (2011).Google Scholar
  8. 8.
    M. Daniel, M. Friedemann, N. Jeohrmann, et al., “Influence of the substrate thermal expansion coefficient on the morphology and elastic stress of CoSb3 thin films,” Phys. Status Solidi A, 210, No. 1, 140–146 (2013).CrossRefGoogle Scholar
  9. 9.
    A. A. Rusakov, Radiometallography, Handbook, Atomizdat, Moscow (1977), pp. 389–407.Google Scholar
  10. 10.
    D. Zhaoa, C. Tiana, and Yu. Liua, “High temperature sublimation behavior of antimony in CoSb3 thermoelectric material during thermal duration test,” J. Alloys Comp., 509, 3166–3171 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • R. A. Shkarban
    • 1
  • Ya. S. Peresunko
    • 1
  • E. P. Pavlova
    • 1
  • S. I. Sidorenko
    • 1
  • A. Csik
    • 2
  • Yu. N. Makogon
    • 1
  1. 1.National Technical University of Ukraine “Kyiv Polytechnic Institute,”KievUkraine
  2. 2.Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI)DebrecenHungary

Personalised recommendations