Skip to main content
Log in

Mechanical Properties of Titanium–Titanium Boride Composites Through Nanoindentation and Ultrasonic Techniques — An Evaluation Perspective

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

In this work, the mechanical properties such as elastic moduli, shear moduli, and hardness of titanium–titanium boride composites with 20% and 40% of titanium boride reinforcements were estimated by ultrasonic and nanoindentation techniques. The estimated values obtained from the both measuring techniques are compared. The composites were processed by three powder metallurgical techniques such as spark plasma sintering, hot isostatic pressing, and vacuum sintering. The composites processed through spark plasma sintering and hot isostatic pressing showed better mechanical properties compared to the vacuum sintered composites. The effects of titanium boride reinforcements and their morphological influences on the mechanical properties are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Chandrasekar, V. Balusamy, K. S. Ravi Chandran, and Harish Kumar, “Laser surface hardening of titanium–titanium boride (Ti–TiB) metal matrix composites,” Scripta Mater., 56, 641–644 (2007).

    Article  Google Scholar 

  2. C. Guo, J. Zhou, J. Zhao, et al., “Microstructure and friction and wear behavior of laser boronizing composite coatings on titanium substrate,” Appl. Surf. Sci., 257, 4398–4405 (2011).

    Article  Google Scholar 

  3. H. Dong and T. Bell, “Enhanced wear resistance of titanium surfaces by a new thermal oxidation treatment,” Wear, 238, 131–137 (2000).

    Article  Google Scholar 

  4. C. Lee, A. Sanders, N. Tikekar, and K. S. Ravichandran, “Tribology of titanium boride –coated titanium balls against alumina ceramic: wear, friction, and micromechanisms,” Wear, 265, 375–386 (2008).

    Article  Google Scholar 

  5. K. Morsi, V. V. Patel, S. Naraghi, and J. E. Garay, “Processing of titanium–titanium boride dual matrix composites,” J. Mater. Process. Technol., 196, 236–242 (2008).

    Article  Google Scholar 

  6. Zh. Zhang, X. B. Shen, S. Wen, et al., “In situ reaction synthesis of Ti–TiB composites containing high volume fraction of TiB by spark plasma sintering process,” J. Alloys Compd., 503, 145–150 (2010).

    Article  Google Scholar 

  7. Liu Yanbin, Liu Yong, T. Huiping, W. Bin, and Liu Bin. “Fabrication and mechanical properties of in situ TiC/Ti metal matrix composites,” J. Alloys Compd., 509, 3592–3601 (2011).

  8. M. G. Kim, S. Y. Sung, and Y. J. Kim, “Synthesis of in-situ titanium carbide particle reinforced titanium composites,” Mater. Sci. Forum, 475–479, 963–966 (2005).

    Article  Google Scholar 

  9. K. E. Geng, W. J. Lu, and D. Zhang, “In situ synthesized (TiB +Y2O3) / Ti composites,” J. Mater. Sci. Lett., 22, 877–79 (2003).

    Article  Google Scholar 

  10. B. V. Radhakrishnabhat, J. Subramanyam, and V. V. Bhanuprasad, “Preparation of Ti–TiB–TiC & Ti–TiB composites by in-situ reaction hot pressing,” Mater. Sci. Eng. A, 325, 126–130 (2002).

    Article  Google Scholar 

  11. K. S. Ravi Chandran and K. B. Panda, “Discontinuously reinforced titanium with titanium boride whiskers on the horizon,” Adv. Mater. Processes, 160, 59–62 (2002).

    Google Scholar 

  12. K. Geng, W. Lu, Z. Yang, and D. Zhang, “In situ preparation of titanium matrix composites reinforced by TiB and Nd2O3,” Mater. Lett., 57, 4054–4057 (2003).

    Article  Google Scholar 

  13. S. Gorsse, J. P. Chaminade, and Y. Le Petitcorps, “In situ preparation of titanium base composites reinforced by TiB single crystals using a powder metallurgy technique,” Composites A, 29, 1229–1234 (1998).

    Article  Google Scholar 

  14. A. Pettersson, P. Magnusson, P. Lundberg, and M. Nygren, “Titanium–titanium diboride composites as part of a gradient armor material,” Int. J. Imp. Eng., 32, 387–399 (2005).

    Article  Google Scholar 

  15. S. S. Sahay, K. S. Ravi Chandran, and R. Atri, “Evolution of microstructure and phases in situ processed Ti–TiB composites containing high volume fractions of TiB whiskers,” J. Mater. Res., 14, 4214–4223 (1999).

    Article  Google Scholar 

  16. S. Ranganath, M. Vijaykumar, and Subramanyam, “Combustion-assisted synthesis of Ti–TiB–TiC composite via the casting route,” Mater. Sci. Eng. A, 149, 253–257 (1992).

    Article  Google Scholar 

  17. H. T. Tsang, C. G. Chao, and C. Y. Ma, “In situ fracture observation of a TiC /Ti MMC produced by combustion synthesis,” Scripta Mater., 35, 1007–1012 (1996).

    Article  Google Scholar 

  18. J. Dutta Majumdar and L. Li, “Development of titanium boride (TiB) dispersed titanium (Ti) matrix composite by direct laser cladding,” Mater. Lett., 64, 1010–1012 (2010).

    Article  Google Scholar 

  19. K. B. Panda and K. S. Ravichandran, “Synthesis of titanium–titanium boride (Ti–TiB) composites with a beta-titanium matrix: the nature of TiB formation and composite properties,” Metall. Mater. Trans. A, 34A, 1371–1385 (2003).

    Article  Google Scholar 

  20. W. Min-Min, L. Wei-jie, Q. Ji-ning, et al., “The effect of reinforcements on superplasticity of in situ synthesized (TiB + TiC)/Ti matrix composite,” Scripta Mater., 54, 1955–1959 (2006).

    Article  Google Scholar 

  21. R. R. Atri, K. S. Ravichandran, and S. K. Jha, “Elastic properties of in-situ processed Ti–TiB composites measured by impulse excitation of vibration,” Mater. Sci. Eng. A, 271, 150–159 (1999).

    Article  Google Scholar 

  22. S. Gorsse, Y. L. Petitcorps, S. Matar, and F. Rebillat, “Investigation of the Young’s modulus of TiB needles in situ produced in titanium matrix composite,” Mater. Sci. Eng. A, 340, 80–87 (2003).

    Article  Google Scholar 

  23. H. Feng, Y. Zhou, D. Jia, and Q. Meng, “Microstructure and mechanical properties of in situ TiB reinforced titanium matrix composites based on Ti–FeMo–B prepared by spark plasma sintering,” Compos. Sci. Technol., 64, 2495–2500 (2004).

    Article  Google Scholar 

  24. X. Shen, Z. Zhang, S. Wei, et al., “Microstructure and mechanical properties of the in situ TiB –Ti metalmatrix composites synthesized by spark plasma sintering process,” J. Alloys Compd., 509, 7692–7696 (2011).

    Article  Google Scholar 

  25. L. H. Lia, H. E. Kim, and E. S. Kang, “Sintering and mechanical properties of Titanium diboride with aluminum nitride as a sintering aid,” J. Eur. Ceram. Soc., 22, 973–977 (2002).

    Article  Google Scholar 

  26. K. B. Panda and K. S. Ravichandran, “Titanium–titanium boride (TiB) functionally graded materials through reaction sintering: synthesis, microstructure and properties,” Metall. Mater. Trans. A, 34A, 1993–2003 (2003).

    Article  Google Scholar 

  27. G. Kartal, S. Timur, M. Urgen, and A. Erdemir, “Electrochemical boriding of titanium for improved mechanical properties,” Surf. Coat. Technol., 204, 3935–3939 (2010).

    Article  Google Scholar 

  28. S. Gorsse and D. B. Miracle, “Mechanical properties of Ti–6Al–4V/TiB composites with randomly oriented and aligned TiB reinforcements,” Acta Mater., 51, 2427–2442 (2003).

    Article  Google Scholar 

  29. H. Feng, Y. Zhou, D. Jia, and Q. Meng, “Rapid synthesis of Ti alloy with B addition by spark plasma sintering,” Mater. Sci. Eng. A, 390, 344–349 (2005).

    Article  Google Scholar 

  30. F. C. Wang, Zh. Zhang, J. Luo, et al.,, “A novel rapid route for in situ synthesizing TiB–TiB2 composites,” Compos. Sci. Technol., 69, 2682–2687 (2009).

    Article  Google Scholar 

  31. P. Majumdar, S. B. Singh, and M. Chakraborty, “Elastic modulus of biomedical titanium alloys by nanoindentation and ultrasonic techniques—A comparative study,” Mater. Sci. Eng. A, 489, 419–425 (2008).

    Article  Google Scholar 

  32. M. Doghmane, F. Hadjoub, A. Doghmane, and Z. Hadjoub, “Approaches for evaluating Young’s and shear moduli in terms of a single SAW velocity via the SAM technique,” Mater. Lett., 61, 813–816 (2007).

    Article  Google Scholar 

  33. B. Raj, V. Moorthy, T. Jayakumar, and K. B. S. Rao, “Assessment of microstructures and mechanical behavior of metallic materials through nondestructive characterization,” Int. Mater. Rev., 48, 273–325 (2003).

    Article  Google Scholar 

  34. W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” J. Mater. Res., 19, No. 1, 3–20 (2004).

    Article  Google Scholar 

  35. A. C. Fischer-Cripps, “Critical review of analysis and interpretation of nanoindentation test data,” Surf. Coat. Technol., 200, 4153–4165 (2006).

    Article  Google Scholar 

  36. M. Selvakumar, P. Chandrasekar, P. Chandramohan, and M. Mohanraj, “Characterization of titanium–titanium boride composited processed by powder metallurgical techniques,” Mater. Charact., 73, 43–51 (2012).

    Article  Google Scholar 

  37. K. E. Spear, P. McDowell, and F. McMahon, “Experimental evidence for the existence of the Ti3B4 phase,” J. Am. Ceram. Soc., 69, C4–C5 (1986).

    Article  Google Scholar 

  38. N. Gupta, S. Ramesh Kumar, B. Ravisankar, and S. Kumaran, “Consolidation of Al–2024 powder by conventional P/M route and ECAP—A Comparative study,” World Academy of Science, Engineering and Technology, 61, 1067–1070 (2012).

    Google Scholar 

  39. R. Banerjee, S. Nag, and H. L. Fraser, “A novel combinatorial approach to the development of beta titanium alloys for orthopedic implants,” Mater. Sci. Eng. A, C25, 282–289 (2005).

    Article  Google Scholar 

  40. Y. L. Hao, M. Ninomi, D. Kuroda, et al., “Young’s modulus and mechanical properties of Ti–29Nb–13Ta–4.6Zr in relation to α martensite,” Metall. Mater. Trans. A, 33, 3137–3144 (2002).

    Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the All India Council for Technical Education (AICTE), New Delhi, for providing grant to carry out this work at Dr. Mahalingam College of Engineering and Technology, Pollachi, India. They also acknowledge Dr. P. Chandramohan, Professional Educational Trust Group of Institutions, Coimbatore, Dr. G. Apparao, DMRL, Hyderabad, Dr. Anish Kumar, IGCAR, Kalpakkam, Mr. M. Govindaraj, NFTDC, Hyderabad, Ms. Kalavathy, IGCAR–Kalpakkam, Mr. Dibyendu Chackravarthy, ARCI, Hyderabad and Mr. M. Thirumoorthy, ASL, Hyderabad for their support in processing the composites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Selvakumar.

Additional information

Published in Poroshkovaya Metallurgiya, Vol. 53, No. 9–10 (499), pp. 81–91, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvakumar, M., Chandrasekar, P., Ravisankar, B. et al. Mechanical Properties of Titanium–Titanium Boride Composites Through Nanoindentation and Ultrasonic Techniques — An Evaluation Perspective. Powder Metall Met Ceram 53, 557–565 (2015). https://doi.org/10.1007/s11106-015-9650-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-015-9650-6

Keywords

Navigation