Powder Metallurgy and Metal Ceramics

, Volume 53, Issue 5–6, pp 343–352 | Cite as

Hydrogenation, Disproportionation, Desorption, and Recombination in the Sm2Co17–x Fe x –H2 System (x =3.9 and 5.95). X-Ray Diffraction

  • I. I. Bulyk
  • M. V. Pilat
  • P. Ya. Lyutyy

Differential thermal analysis and X-ray diffraction are used to study phase transitions in the Sm2Co17–xFex–H2 system (x =3.9 and 5.95) during conventional and solid HDDR at hydrogen pressure 0.57–4.0 MPa and temperature up to 950°C. The ferromagnetic phase with Th2Zn17 structure disproportionates into SmH2±x, cobalt, and intermetallic FeCo after one-hour interaction with hydrogen at 1.1 and 0.6 MPa and 700°C with x =3.9 and 5.95. Recombination in vacuum at 770–950°C leads to a two-phase alloy consisting of the Th2Zn17-type phase and intermetallic FeCo.


hydrogenation, disproportionation, desorption, recombination samarium–cobalt alloys two-phase ferromagnetic materials 


  1. 1.
    K. J. Strnat and R. M. W. Strnat, “Rare earth–cobalt permanent magnets,” J. Magn. Magn. Mater., 100, 38–56 (1991).CrossRefGoogle Scholar
  2. 2.
    R. Manaf, R. A. Buckley, and H. A. Davis, “New nanocrystalline high-remanence Nd–Fe–B alloys by rapid solidification,” J. Magn. Magn. Mater., 128, 302–306 (1993).CrossRefGoogle Scholar
  3. 3.
    L. Withanawasam, G. C. Hadjipanayis, and R. F. Krause, “Enhanced remanence in isotropic Fe-rich melt-spun Nd–Fe–B ribbons,” J. Appl. Phys., 75, 6646–6648 (1994).CrossRefGoogle Scholar
  4. 4.
    J. Ding, P. G. McCormick, and R. Street, “Remanence enhancement in mechanically alloyed isotropic Sm7Fe93-nitride,” J. Magn. Magn. Mater., 124, 1–4 (1993).CrossRefGoogle Scholar
  5. 5.
    O. Donnell, C. Kuhrt, and J. M. D. Coey, “Influence of nitrogen content on coercivity in remanence-enhanced mechanically alloyed Sm–Fe–N,” J. Appl. Phys., 76, 7068–7070 (1994).CrossRefGoogle Scholar
  6. 6.
    D. Lee, S. Bauser, A. Higgins, et al., “Bulk anisotropic composite rare earth magnets,” J. Appl. Phys., 99, 08B516-1–108B516-3 (2006).Google Scholar
  7. 7.
    G. C. Hadjipanayis and A. M. Gabay, “Overview of the high-temperature 2:17 magnets,” in: Proc. 18th Int. Workshop on High Performance Magnets and Their Applications HPMA’04, Annecy, France (2004).Google Scholar
  8. 8.
    G. C. Hadjipanayis, J. Liu, A. M. Gabay, and M. Marinesku, “Current status of rare-earth permanent magnet research in USA,” in: Proc. 19th Int. Workshop on High Performance Magnets and Their Applications, Beijing, China (2006), pp. 12–22.Google Scholar
  9. 9.
    A. M. Gabay, W. F. Li, and G. C. Hadjipanayis, “Effect of hot deformation on texture and magnetic properties of Sm–Co and Pr–Co alloy,” J. Magn. Magn. Mater., 323, 2470–2473 (2011).CrossRefGoogle Scholar
  10. 10.
    N. Poudyal and J. P. Liu, “Advances in nanostructured permanent magnets research,” J. Phys. D: Appl. Phys., 46, 1–23 (2013).Google Scholar
  11. 11.
    N. Cannesan and I. R. Harris, “Aspects of NdFeB HDDR powders: fundamentals and processing,” in: G. C. Hadjipanayis (ed.), Bonded Magnets (NATO Science), series II “Mathematics, Physics, and Chemistry,” Kluwer Academic Publishers (2002), Vol. 118, pp. 13–36.Google Scholar
  12. 12.
    O. Gutfleisch, M. Matzinger, J. Fidler, and I. R. Harris, “Characterization of solid-HDDR processed Nd16Fe76B8 alloys by means of electron microscopy,” J. Magn. Magn. Mater., 47, 320–330 (1995).CrossRefGoogle Scholar
  13. 13.
    I. I. Bulik, V. V. Panasyuk, and A. M. Trostyanchin, Method of Forming Anisotropic Fine-Grained Sm–Co Alloy Powders by Hydrogen–Vacuum Thermal Treatment [in Ukrainian], Ukrainian Patent No. 96810, H 01 F 1/053, H 01 F 1/055, B 82 B 3/00, Bulletin No. 23, publ. December 12 (2011), p. 7.Google Scholar
  14. 14.
    I. I. Bulik, V. V. Panasyuk, and A. M. Trostyanchin, Method of Forming Anisotropic Fine-Grained Sm–Co Alloy Powders by Grinding in Hydrogen [in Ukrainian], Ukrainian Patent No. 96811, H 01 F 1/053, H 01 F 1/055, B 82 B 3/00, Bulletin No. 12, publ. December 12 (2011), p. 11.Google Scholar
  15. 15.
    I. I. Bulik and V. V. Panasyuk, “Hydrogen as a process environment for forming nanostructure in ferromagnetic Sm–Co alloys,” Fiz. Khim. Mekh. Mater., 48, No. 1, 9–18 (2012).Google Scholar
  16. 16.
    I. I. Bulik, V. V. Burkhovetskii, V. Yu. Tarenkov, and P. Ya. Lyutyi, “Change in Sm2Co17 microstructure during disproportionation in hydrogen,” Metallofiz. Noveish. Tekhnol., 35, No. 9, 1283–1294 (2013).Google Scholar
  17. 17.
    I. I. Bulik, R. V. Denis, V. V. Panasyuk, et al., “HDDR process and hydrogen sorption properties of didymium–aluminum–iron–boron (Dd12.3Al1.2Fe79.4B6) alloy,” Fiz. Khim. Mekh. Mater., 37, No. 4, 15–20 (2001).Google Scholar
  18. 18.
    I. I. Bulik, Yu. B. Basaraba, A. M. Trostyanchin, and V. M. Davydov, “Disproportionation in hydrogen and recombination of zirconium–chromium Laves phases,” Fiz. Khim. Mekh. Mater., 41, No. 3, 101–108 (2005).Google Scholar
  19. 19.
    Electronic Registry:
  20. 20.
    Electronic Registry:
  21. 21.
    N. C. Christodoulou and T. Takeshita, “Sm2Co17-nitride-based permanent magnets produced by the hydrogenation–decomposition–desorption–recombination (HDDR) process,” J. Alloys Compd., 196, 155–159 (1993).CrossRefGoogle Scholar
  22. 22.
    M. V. Satyanarayana, W. E. Wallace, and R. S. Craig, “Effects of substitution of chromium and nickel on the magnetic properties of Er2Co17 and Sm2Co17,” J. Appl. Phys., 50, 2324–2326 (1979).CrossRefGoogle Scholar
  23. 23.
    F. Meyer-Liautaud, C. H. Allibert, and R. Castanet, “Enthalpies of formation of Sm–Co alloys in the composition range 10–22 at.% Sm,” J. Less.-Common Met., 127, 243–250 (1987).CrossRefGoogle Scholar
  24. 24.
    H. Y. Chen, S. G. Sankar, and W. E. Wallace, “Spin reorientation in substituted Nd2Co17 compounds,” J. Appl. Phys., 63, 3969–3971 (1988).CrossRefGoogle Scholar
  25. 25.
    A. Deryagin, A. Ulyanov, N. Kudrevatykh, et al., “Magnetic characteristics and lattice constants of some pseudobinary intermetallic compounds of the type R2T17,” Phys. St. Sol. A, 23, K15–K18 (1974).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Karpenko Physicomechanical InstituteNational Academy of Sciences of UkraineLvivUkraine

Personalised recommendations