Skip to main content

Advertisement

Log in

Hydrogenation, Disproportionation, Desorption, and Recombination in the Sm2Co17–x Fe x –H2 System (x =3.9 and 5.95). X-Ray Diffraction

  • STRUCTURAL MATERIALS RESEARCH
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Differential thermal analysis and X-ray diffraction are used to study phase transitions in the Sm2Co17–xFex–H2 system (x =3.9 and 5.95) during conventional and solid HDDR at hydrogen pressure 0.57–4.0 MPa and temperature up to 950°C. The ferromagnetic phase with Th2Zn17 structure disproportionates into SmH2±x, cobalt, and intermetallic FeCo after one-hour interaction with hydrogen at 1.1 and 0.6 MPa and 700°C with x =3.9 and 5.95. Recombination in vacuum at 770–950°C leads to a two-phase alloy consisting of the Th2Zn17-type phase and intermetallic FeCo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. J. Strnat and R. M. W. Strnat, “Rare earth–cobalt permanent magnets,” J. Magn. Magn. Mater., 100, 38–56 (1991).

    Article  Google Scholar 

  2. R. Manaf, R. A. Buckley, and H. A. Davis, “New nanocrystalline high-remanence Nd–Fe–B alloys by rapid solidification,” J. Magn. Magn. Mater., 128, 302–306 (1993).

    Article  Google Scholar 

  3. L. Withanawasam, G. C. Hadjipanayis, and R. F. Krause, “Enhanced remanence in isotropic Fe-rich melt-spun Nd–Fe–B ribbons,” J. Appl. Phys., 75, 6646–6648 (1994).

    Article  Google Scholar 

  4. J. Ding, P. G. McCormick, and R. Street, “Remanence enhancement in mechanically alloyed isotropic Sm7Fe93-nitride,” J. Magn. Magn. Mater., 124, 1–4 (1993).

    Article  Google Scholar 

  5. O. Donnell, C. Kuhrt, and J. M. D. Coey, “Influence of nitrogen content on coercivity in remanence-enhanced mechanically alloyed Sm–Fe–N,” J. Appl. Phys., 76, 7068–7070 (1994).

    Article  Google Scholar 

  6. D. Lee, S. Bauser, A. Higgins, et al., “Bulk anisotropic composite rare earth magnets,” J. Appl. Phys., 99, 08B516-1–108B516-3 (2006).

    Google Scholar 

  7. G. C. Hadjipanayis and A. M. Gabay, “Overview of the high-temperature 2:17 magnets,” in: Proc. 18th Int. Workshop on High Performance Magnets and Their Applications HPMA’04, Annecy, France (2004).

  8. G. C. Hadjipanayis, J. Liu, A. M. Gabay, and M. Marinesku, “Current status of rare-earth permanent magnet research in USA,” in: Proc. 19th Int. Workshop on High Performance Magnets and Their Applications, Beijing, China (2006), pp. 12–22.

  9. A. M. Gabay, W. F. Li, and G. C. Hadjipanayis, “Effect of hot deformation on texture and magnetic properties of Sm–Co and Pr–Co alloy,” J. Magn. Magn. Mater., 323, 2470–2473 (2011).

    Article  Google Scholar 

  10. N. Poudyal and J. P. Liu, “Advances in nanostructured permanent magnets research,” J. Phys. D: Appl. Phys., 46, 1–23 (2013).

    Google Scholar 

  11. N. Cannesan and I. R. Harris, “Aspects of NdFeB HDDR powders: fundamentals and processing,” in: G. C. Hadjipanayis (ed.), Bonded Magnets (NATO Science), series II “Mathematics, Physics, and Chemistry,” Kluwer Academic Publishers (2002), Vol. 118, pp. 13–36.

  12. O. Gutfleisch, M. Matzinger, J. Fidler, and I. R. Harris, “Characterization of solid-HDDR processed Nd16Fe76B8 alloys by means of electron microscopy,” J. Magn. Magn. Mater., 47, 320–330 (1995).

    Article  Google Scholar 

  13. I. I. Bulik, V. V. Panasyuk, and A. M. Trostyanchin, Method of Forming Anisotropic Fine-Grained Sm–Co Alloy Powders by Hydrogen–Vacuum Thermal Treatment [in Ukrainian], Ukrainian Patent No. 96810, H 01 F 1/053, H 01 F 1/055, B 82 B 3/00, Bulletin No. 23, publ. December 12 (2011), p. 7.

  14. I. I. Bulik, V. V. Panasyuk, and A. M. Trostyanchin, Method of Forming Anisotropic Fine-Grained Sm–Co Alloy Powders by Grinding in Hydrogen [in Ukrainian], Ukrainian Patent No. 96811, H 01 F 1/053, H 01 F 1/055, B 82 B 3/00, Bulletin No. 12, publ. December 12 (2011), p. 11.

  15. I. I. Bulik and V. V. Panasyuk, “Hydrogen as a process environment for forming nanostructure in ferromagnetic Sm–Co alloys,” Fiz. Khim. Mekh. Mater., 48, No. 1, 9–18 (2012).

    Google Scholar 

  16. I. I. Bulik, V. V. Burkhovetskii, V. Yu. Tarenkov, and P. Ya. Lyutyi, “Change in Sm2Co17 microstructure during disproportionation in hydrogen,” Metallofiz. Noveish. Tekhnol., 35, No. 9, 1283–1294 (2013).

    Google Scholar 

  17. I. I. Bulik, R. V. Denis, V. V. Panasyuk, et al., “HDDR process and hydrogen sorption properties of didymium–aluminum–iron–boron (Dd12.3Al1.2Fe79.4B6) alloy,” Fiz. Khim. Mekh. Mater., 37, No. 4, 15–20 (2001).

    Google Scholar 

  18. I. I. Bulik, Yu. B. Basaraba, A. M. Trostyanchin, and V. M. Davydov, “Disproportionation in hydrogen and recombination of zirconium–chromium Laves phases,” Fiz. Khim. Mekh. Mater., 41, No. 3, 101–108 (2005).

    Google Scholar 

  19. Electronic Registry: www.ccp14.ac.uk .

  20. Electronic Registry: www.ill.eu/sites/fullprof .

  21. N. C. Christodoulou and T. Takeshita, “Sm2Co17-nitride-based permanent magnets produced by the hydrogenation–decomposition–desorption–recombination (HDDR) process,” J. Alloys Compd., 196, 155–159 (1993).

    Article  Google Scholar 

  22. M. V. Satyanarayana, W. E. Wallace, and R. S. Craig, “Effects of substitution of chromium and nickel on the magnetic properties of Er2Co17 and Sm2Co17,” J. Appl. Phys., 50, 2324–2326 (1979).

    Article  Google Scholar 

  23. F. Meyer-Liautaud, C. H. Allibert, and R. Castanet, “Enthalpies of formation of Sm–Co alloys in the composition range 10–22 at.% Sm,” J. Less.-Common Met., 127, 243–250 (1987).

    Article  Google Scholar 

  24. H. Y. Chen, S. G. Sankar, and W. E. Wallace, “Spin reorientation in substituted Nd2Co17 compounds,” J. Appl. Phys., 63, 3969–3971 (1988).

    Article  Google Scholar 

  25. A. Deryagin, A. Ulyanov, N. Kudrevatykh, et al., “Magnetic characteristics and lattice constants of some pseudobinary intermetallic compounds of the type R2T17,” Phys. St. Sol. A, 23, K15–K18 (1974).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Bulyk.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 53, No. 5–6 (497), pp. 115–126, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulyk, I.I., Pilat, M.V. & Lyutyy, P.Y. Hydrogenation, Disproportionation, Desorption, and Recombination in the Sm2Co17–x Fe x –H2 System (x =3.9 and 5.95). X-Ray Diffraction. Powder Metall Met Ceram 53, 343–352 (2014). https://doi.org/10.1007/s11106-014-9622-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-014-9622-2

Keywords

Navigation