Powder Metallurgy and Metal Ceramics

, Volume 53, Issue 3–4, pp 230–242 | Cite as

Phase Equilibria in the Melting/Solidification Range of B–Mo–Ti Alloys

  • O. A. Potazhevska
  • A. A. Bondar
  • L. A. Duma
  • V. M. Petyukh
  • V. B. Sobolev
  • T. Ya. Velikanova

As-cast B–Mo–Ti alloys and samples annealed at subsolidus temperatures are experimentally studied by X-ray diffraction and scanning electron microscopy with electron microprobe analysis. Solidus temperatures and temperatures of other phase transformations are measured by differential thermal analysis and pyrometry with the Pirani–Alterthum method. No ternary compounds are found in the examined alloys. Based on the data obtained, the B–Mo–Ti liquidus and solidus surfaces have been constructed for the first time.


Ti–Mo–B phase diagram boride liquidus solidus eutectic 


  1. 1.
    S. Lampman, “Wrought titanium and titanium alloys,” in: Metals Handbook, Tenth Edition, Vol. 2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, International Materials Park, ASM, Ohio (1990), pp. 592–633.Google Scholar
  2. 2.
    S. Tamirisakandala, R. B. Bhat, J. S. Tiley, and D. B. Miracle, “Grain refinement of cast titanium alloys via trace boron addition,” Scripta Mater., 53, 1421–1426 (2005).CrossRefGoogle Scholar
  3. 3.
    T. T. Cheng, “The mechanism of grain refinement in TiAl alloys by boron addition—an alternative hypothesis,” Intermetallics, 8, No. 1, 29–37 (2000).CrossRefGoogle Scholar
  4. 4.
    U. Hecht, V. Witusiewicz, A. Drevermann, and J. Zollinger, “Grain refinement by low boron additions in niobium-rich TiAl-based alloys,” Intermetallics, 16, 969–978 (2008).CrossRefGoogle Scholar
  5. 5.
    K. S. Ravi Chandran and D. B. Miracle, “Titanium–boron alloys and composites: Processing, properties, and applications,” JOM, 56, No. 5, 32–33 (2004).CrossRefGoogle Scholar
  6. 6.
    A. Wittmann, H. Nowotny, and H. Boller, “Ein beitrag zum dreistoff titan–molybdän–bor,” Monatsh. Chem., 91, No. 4, 608–615 (1960).CrossRefGoogle Scholar
  7. 7.
    S. O. Ordan’yan, N. V. Kosterova, and A. I. Avgustinik, “Constitution of the Ti–B–Mo and Ti–B–W systems at 1400°C,” Dep. VINITI No. 2563–76, in: Phase Diagrams of Metal Systems [in Russian] (1976); N. V. Ageev (ed.), I. G. Eroshenkova, V. G. Olenicheva, and L. A. Petrova, VINITI, Moscow (1978), Issue XXII, pp. 149–150.Google Scholar
  8. 8.
    S. S. Ordan’yan, N. V. Kosterova, and A. I. Avgustinik, “Phase equilibria in the Ti–B–Mo system at 1400°C,” Izv. AN SSSR. Neorg. Mater., 13, No. 5, 844–846 (1977).Google Scholar
  9. 9.
    B. Post, F. W. Glaser, and D. Moskowitz, “Transition metal diborides,” Acta Metall., 2, No. 1, 20–25 (1954).CrossRefGoogle Scholar
  10. 10.
    K. I. Portonoi and G. V. Samsonov, “Examining boride-based materials,” in: Study of Heat-Resistant Alloys [in Russian], Inst. Metall. Baikova AN SSSR, Moscow (1959), Vol. 5, pp. 192–198.Google Scholar
  11. 11.
    M. S. Kovalchenko, G. V. Samsonov, and G. A. Yasinskaya, “Alloys of transition metal borides and other metals,” Izv. Akad. Nauk SSSR. Metall. Toplivo, 2, No. 2, 115–119 (1960).Google Scholar
  12. 12.
    J. M. Leitnacker, N. H. Krikorian, and M. C. Krupka, “Unusual ternary behavior of transition metal borides,” J. Electrochem. Soc., 109, 66 (1962).CrossRefGoogle Scholar
  13. 13.
    A. M. Zakharov and V. S. Pol’kin, “Molybdenum corner of the ternary Mo–Ti–В and Mo–Zr–B systems,” Izv. Vuz. Tsvet. Metall., No. 4, 109–113 (1972).Google Scholar
  14. 14.
    T. B. Gorbacheva, Yu. I. Krylov, and N. M. Mikova, “Examining high-temperature interaction of refractory metals with borides,” in: O. P. Kolchin (ed.), Hard Alloys and Refractory Metals [in Russian], Metallurgiya, Moscow (1973), No. 14, pp. 239–243.Google Scholar
  15. 15.
    Yu. B. Yuriditskii, V. A. Pesin, and S. S. Ordan’yan, “Change in the fine structure of titanium diboride occurring during the sintering of A TiB2–Fe(Mo) cermet,” Powder Metall. Met. Ceram., 21, No. 4, 280–282 (1982).CrossRefGoogle Scholar
  16. 16.
    T. Velikanova and M. Turchanin, “Boron–molybdenum–titanium,” in: Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, W. Martinseen (ed.), New Series. Group IV: Physical Chemistry, G. Effenberg and S. Ilyenko (eds.), Ternary Alloy Systems, Phase Diagrams, Crystallographic and Thermodynamic Data Critically Evaluated by MSIT, Vol. 11E2, Springer-Verlag, Berlin, Heidelberg (2008), pp. 46–60.Google Scholar
  17. 17.
    T. V. Massalski, P. R. Subramanian, H. Okomoto, et al., Binary Alloy Phase Diagrams: Handbook, 3 Vols., 2nd ed., International Materials Park, ASM, Ohio (1990), p. 3589.Google Scholar
  18. 18.
    T. Lunström and L. E. Tergenius, “On the solid solution of copper in β-rhombohedral boron,” J. Less-Common Met., 47, 23–28 (1976).CrossRefGoogle Scholar
  19. 19.
    P. Rogl, “Nb–B–C (niobium–boron–carbon),” in: G. Effenberg (ed.), Phase Diagrams of Metal–Boron–Carbon Ternary Systems, International Materials Park, ASM–MSI, Ohio, USA (1998), pp. 202–205.Google Scholar
  20. 20.
    J. L. Murray, P. K. Liao, and K. E. Spear, “The B–Ti (boron–titanium) system,” Bull. Alloy Phase Equilib., 7, No. 6, 550–555 (1986).CrossRefGoogle Scholar
  21. 21.
    J. L. Murray, P. K. Liao, and K. E. Spear, “The B–Ti (boron–titanium) system,” in: J. L. Murray (ed.), Phase Diagrams of Binary Titanium Alloys, ASM International Materials Park, Ohio (1987), pp. 33–38.Google Scholar
  22. 22.
    B. Predel, “B–Mo (boron–molybdenum),” in: Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, O. Madelung (ed.), New Series. Group IV: Physical Chemistry, Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys, Springer-Verlag, Berlin, Heidelberg (1992), Vol. 5b, pp. 1–4.Google Scholar
  23. 23.
    V. T. Witusiewicz, A. A. Bondar, U. Hech, et al., “The Al–B–Nb–Ti system. Re-assessment of the constituent binary systems B–Nb and B–Ti on the basis of new experimental data,” J. Alloys Compd., 448, 185–194 (2008).CrossRefGoogle Scholar
  24. 24.
    D. B. Borisov, L. V. Artyukh, A. A. Bondar, et al., “Titanium-boride eutectic materials. Structure of the Ti–Nb–B alloys and phase equilibria,” Powder Metall. Met. Ceram., 46, No. 1–2, 58–71 (2007).CrossRefGoogle Scholar
  25. 25.
    E. Rudy, Ternary Phase Equilibria in Transition Metal–Boron–Carbon–Silicon Systems, Tech. Rep. AFML-TR-65-2, Part V, Compendium of Phase Diagram Data, Air Force Materials Laboratory, Wright-Patterson, Ohio (1969), p. 689.Google Scholar
  26. 26.
    K. E. Spear and P. K. Liao, “The B−Mo (boron–molybdenum) system,” Bull. Alloy Phase Diagr., 9, No. 4, 457–466 (1988).CrossRefGoogle Scholar
  27. 27.
    N. P. Lyakishev (ed.), Binary Phase Diagrams: Handbook (in 3 Vols.) [in Russian], Mashinostroenie, Moscow (1996), Vol. 1, p. 992.Google Scholar
  28. 28.
    M. Pirani and H. Alterthum, “Uber eine methode zur schmelzpunktbestimmung an hochschmelzenden metallen,” Z. Elektrochem., 29, No. 1–2, 5–8 (1923).Google Scholar
  29. 29.
    Ju. A. Kocherzhinsky, “Differential thermocouple up to 2450°C and thermographic investigations of refractory silicides,” in: Proc. 3rd ICTA on Thermal Analysis (Davos), Birkhäuser Verlag, Basel (1971), Vol. 1, pp. 549–559.Google Scholar
  30. 30.
    Yu. A. Kocherzhinskii, E. A. Shishkin, and V. I. Vasilenko, “DTA unit with a thermocouple sensor up to 2200°C,” in: Phase Diagrams of Metal Systems [in Russian], Nauka, Moscow (1971), pp. 245–249.Google Scholar
  31. 31.
    A. A. Bondar, V. A. Maslyuk, T. Ya. Velikanova, and A. V. Grytsiv, “Phase equilibria in the Cr−Ni−C system and their use for developing physicochemical principles for design of hard alloys based on chromium carbide,” Powder Metall. Met. Ceram., 36, No. 5–6, 242–252 (1997).CrossRefGoogle Scholar
  32. 32.
    T. Ya. Velikanova, A. A. Bondar, and A. V. Grytsiv, “The chromium–nickel–carbon phase diagram,” J. Phase Equilib., 20, No. 2, 125–147 (1999).CrossRefGoogle Scholar
  33. 33.
    L. V. Artyukh, D. B. Borysov, A. A. Bondar, et al., “Titanium–boride eutectic materials: Phase equilibria and constitution of alloys in the Ti-rich portion of the Ti–V–B system,” High Temp. Mat. Pr.–Isr., 25, No. 1–2, 75–82 (2005).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • O. A. Potazhevska
    • 1
  • A. A. Bondar
    • 1
  • L. A. Duma
    • 1
  • V. M. Petyukh
    • 1
  • V. B. Sobolev
    • 2
  • T. Ya. Velikanova
    • 1
  1. 1.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKievUkraine
  2. 2.Technical CenterNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations