Skip to main content
Log in

Phase Equilibria in the Melting/Solidification Range of B–Mo–Ti Alloys

  • PHYSICOCHEMICAL MATERIALS RESEARCH
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

As-cast B–Mo–Ti alloys and samples annealed at subsolidus temperatures are experimentally studied by X-ray diffraction and scanning electron microscopy with electron microprobe analysis. Solidus temperatures and temperatures of other phase transformations are measured by differential thermal analysis and pyrometry with the Pirani–Alterthum method. No ternary compounds are found in the examined alloys. Based on the data obtained, the B–Mo–Ti liquidus and solidus surfaces have been constructed for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The phases in round brackets denote solid solutions on their basis (brackets are not used in the notation of boride-based solutions for simplification).

References

  1. S. Lampman, “Wrought titanium and titanium alloys,” in: Metals Handbook, Tenth Edition, Vol. 2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, International Materials Park, ASM, Ohio (1990), pp. 592–633.

  2. S. Tamirisakandala, R. B. Bhat, J. S. Tiley, and D. B. Miracle, “Grain refinement of cast titanium alloys via trace boron addition,” Scripta Mater., 53, 1421–1426 (2005).

    Article  Google Scholar 

  3. T. T. Cheng, “The mechanism of grain refinement in TiAl alloys by boron addition—an alternative hypothesis,” Intermetallics, 8, No. 1, 29–37 (2000).

    Article  Google Scholar 

  4. U. Hecht, V. Witusiewicz, A. Drevermann, and J. Zollinger, “Grain refinement by low boron additions in niobium-rich TiAl-based alloys,” Intermetallics, 16, 969–978 (2008).

    Article  Google Scholar 

  5. K. S. Ravi Chandran and D. B. Miracle, “Titanium–boron alloys and composites: Processing, properties, and applications,” JOM, 56, No. 5, 32–33 (2004).

    Article  Google Scholar 

  6. A. Wittmann, H. Nowotny, and H. Boller, “Ein beitrag zum dreistoff titan–molybdän–bor,” Monatsh. Chem., 91, No. 4, 608–615 (1960).

    Article  Google Scholar 

  7. S. O. Ordan’yan, N. V. Kosterova, and A. I. Avgustinik, “Constitution of the Ti–B–Mo and Ti–B–W systems at 1400°C,” Dep. VINITI No. 2563–76, in: Phase Diagrams of Metal Systems [in Russian] (1976); N. V. Ageev (ed.), I. G. Eroshenkova, V. G. Olenicheva, and L. A. Petrova, VINITI, Moscow (1978), Issue XXII, pp. 149–150.

  8. S. S. Ordan’yan, N. V. Kosterova, and A. I. Avgustinik, “Phase equilibria in the Ti–B–Mo system at 1400°C,” Izv. AN SSSR. Neorg. Mater., 13, No. 5, 844–846 (1977).

    Google Scholar 

  9. B. Post, F. W. Glaser, and D. Moskowitz, “Transition metal diborides,” Acta Metall., 2, No. 1, 20–25 (1954).

    Article  Google Scholar 

  10. K. I. Portonoi and G. V. Samsonov, “Examining boride-based materials,” in: Study of Heat-Resistant Alloys [in Russian], Inst. Metall. Baikova AN SSSR, Moscow (1959), Vol. 5, pp. 192–198.

    Google Scholar 

  11. M. S. Kovalchenko, G. V. Samsonov, and G. A. Yasinskaya, “Alloys of transition metal borides and other metals,” Izv. Akad. Nauk SSSR. Metall. Toplivo, 2, No. 2, 115–119 (1960).

    Google Scholar 

  12. J. M. Leitnacker, N. H. Krikorian, and M. C. Krupka, “Unusual ternary behavior of transition metal borides,” J. Electrochem. Soc., 109, 66 (1962).

    Article  Google Scholar 

  13. A. M. Zakharov and V. S. Pol’kin, “Molybdenum corner of the ternary Mo–Ti–В and Mo–Zr–B systems,” Izv. Vuz. Tsvet. Metall., No. 4, 109–113 (1972).

  14. T. B. Gorbacheva, Yu. I. Krylov, and N. M. Mikova, “Examining high-temperature interaction of refractory metals with borides,” in: O. P. Kolchin (ed.), Hard Alloys and Refractory Metals [in Russian], Metallurgiya, Moscow (1973), No. 14, pp. 239–243.

  15. Yu. B. Yuriditskii, V. A. Pesin, and S. S. Ordan’yan, “Change in the fine structure of titanium diboride occurring during the sintering of A TiB2–Fe(Mo) cermet,” Powder Metall. Met. Ceram., 21, No. 4, 280–282 (1982).

    Article  Google Scholar 

  16. T. Velikanova and M. Turchanin, “Boron–molybdenum–titanium,” in: Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, W. Martinseen (ed.), New Series. Group IV: Physical Chemistry, G. Effenberg and S. Ilyenko (eds.), Ternary Alloy Systems, Phase Diagrams, Crystallographic and Thermodynamic Data Critically Evaluated by MSIT, Vol. 11E2, Springer-Verlag, Berlin, Heidelberg (2008), pp. 46–60.

  17. T. V. Massalski, P. R. Subramanian, H. Okomoto, et al., Binary Alloy Phase Diagrams: Handbook, 3 Vols., 2nd ed., International Materials Park, ASM, Ohio (1990), p. 3589.

  18. T. Lunström and L. E. Tergenius, “On the solid solution of copper in β-rhombohedral boron,” J. Less-Common Met., 47, 23–28 (1976).

    Article  Google Scholar 

  19. P. Rogl, “Nb–B–C (niobium–boron–carbon),” in: G. Effenberg (ed.), Phase Diagrams of Metal–Boron–Carbon Ternary Systems, International Materials Park, ASM–MSI, Ohio, USA (1998), pp. 202–205.

    Google Scholar 

  20. J. L. Murray, P. K. Liao, and K. E. Spear, “The B–Ti (boron–titanium) system,” Bull. Alloy Phase Equilib., 7, No. 6, 550–555 (1986).

    Article  Google Scholar 

  21. J. L. Murray, P. K. Liao, and K. E. Spear, “The B–Ti (boron–titanium) system,” in: J. L. Murray (ed.), Phase Diagrams of Binary Titanium Alloys, ASM International Materials Park, Ohio (1987), pp. 33–38.

    Google Scholar 

  22. B. Predel, “B–Mo (boron–molybdenum),” in: Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, O. Madelung (ed.), New Series. Group IV: Physical Chemistry, Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys, Springer-Verlag, Berlin, Heidelberg (1992), Vol. 5b, pp. 1–4.

  23. V. T. Witusiewicz, A. A. Bondar, U. Hech, et al., “The Al–B–Nb–Ti system. Re-assessment of the constituent binary systems B–Nb and B–Ti on the basis of new experimental data,” J. Alloys Compd., 448, 185–194 (2008).

    Article  Google Scholar 

  24. D. B. Borisov, L. V. Artyukh, A. A. Bondar, et al., “Titanium-boride eutectic materials. Structure of the Ti–Nb–B alloys and phase equilibria,” Powder Metall. Met. Ceram., 46, No. 1–2, 58–71 (2007).

    Article  Google Scholar 

  25. E. Rudy, Ternary Phase Equilibria in Transition Metal–Boron–Carbon–Silicon Systems, Tech. Rep. AFML-TR-65-2, Part V, Compendium of Phase Diagram Data, Air Force Materials Laboratory, Wright-Patterson, Ohio (1969), p. 689.

  26. K. E. Spear and P. K. Liao, “The B−Mo (boron–molybdenum) system,” Bull. Alloy Phase Diagr., 9, No. 4, 457–466 (1988).

    Article  Google Scholar 

  27. N. P. Lyakishev (ed.), Binary Phase Diagrams: Handbook (in 3 Vols.) [in Russian], Mashinostroenie, Moscow (1996), Vol. 1, p. 992.

  28. M. Pirani and H. Alterthum, “Uber eine methode zur schmelzpunktbestimmung an hochschmelzenden metallen,” Z. Elektrochem., 29, No. 1–2, 5–8 (1923).

    Google Scholar 

  29. Ju. A. Kocherzhinsky, “Differential thermocouple up to 2450°C and thermographic investigations of refractory silicides,” in: Proc. 3rd ICTA on Thermal Analysis (Davos), Birkhäuser Verlag, Basel (1971), Vol. 1, pp. 549–559.

    Google Scholar 

  30. Yu. A. Kocherzhinskii, E. A. Shishkin, and V. I. Vasilenko, “DTA unit with a thermocouple sensor up to 2200°C,” in: Phase Diagrams of Metal Systems [in Russian], Nauka, Moscow (1971), pp. 245–249.

    Google Scholar 

  31. A. A. Bondar, V. A. Maslyuk, T. Ya. Velikanova, and A. V. Grytsiv, “Phase equilibria in the Cr−Ni−C system and their use for developing physicochemical principles for design of hard alloys based on chromium carbide,” Powder Metall. Met. Ceram., 36, No. 5–6, 242–252 (1997).

    Article  Google Scholar 

  32. T. Ya. Velikanova, A. A. Bondar, and A. V. Grytsiv, “The chromium–nickel–carbon phase diagram,” J. Phase Equilib., 20, No. 2, 125–147 (1999).

    Article  Google Scholar 

  33. L. V. Artyukh, D. B. Borysov, A. A. Bondar, et al., “Titanium–boride eutectic materials: Phase equilibria and constitution of alloys in the Ti-rich portion of the Ti–V–B system,” High Temp. Mat. Pr.–Isr., 25, No. 1–2, 75–82 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bondar.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 53, No. 3–4 (496), pp. 135–150, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potazhevska, O.A., Bondar, A.A., Duma, L.A. et al. Phase Equilibria in the Melting/Solidification Range of B–Mo–Ti Alloys. Powder Metall Met Ceram 53, 230–242 (2014). https://doi.org/10.1007/s11106-014-9609-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-014-9609-z

Keywords

Navigation