Powder Metallurgy and Metal Ceramics

, Volume 51, Issue 7–8, pp 485–490 | Cite as

Effect of magnetic treatment on the microstructure and strength of WC–Co detonation-sprayed coatings

  • V. E. Oliker
  • Yu. N. Podrezov
  • I. T. Yarmatov
  • T. Ya. Gridasova
  • E. F. Grechishkin
  • A. G. Gavrilenko

The influence of magnetic treatment on fracture of the WC–Co detonation-sprayed coating–St3 steel substrate system is studied in bending tests. It is established that magnetic treatment leads to the redistribution of elements at the coating–substrate interface. It is shown that magnetic treatment improves the mechanical properties of the coating–substrate system: plastic strain of the system increases from 0.15% to 0.35% when coating starts cracking and stresses developed at fracture increase from 700 to 1300 MPa. The improvement of properties is due to better adhesion at the coating–substrate interface resulting from diffusion-controlled redistribution of elements during magnetic treatment.


magnetic treatment detonation-sprayed coatings fracture toughness hardmetal 


  1. 1.
    L. A. Chebotkevich, A. A. Urusovskaya, and V. V. Veter, Kristallografiya, 10, No. 4, Issue 2, 688 (1965).Google Scholar
  2. 2.
    L. A. Chebotkevich, A. A. Urusovskaya, V. V. Veter, and A. D. Ershov, “Interaction of Bloch surfaces with dislocations in weak fields,” Fiz. Tverd. Tela, 9, No. 4, 1093–1097 (1967).Google Scholar
  3. 3.
    S. Hayashi, S. Takahashi, and M. Yamamoto, “Plastic deformation of nickel single in an alternating magnetic field,” J. Phys. Soc. Jpn., 25, 910 (1968).CrossRefGoogle Scholar
  4. 4.
    S. Hayashi, S. Takahashi, and M. Yamamoto, “Magneto-plastic effect in nickel single crystals,” J. Phys. Soc. Jpn., 30, No. 2, 381–387 (1971).CrossRefGoogle Scholar
  5. 5.
    S. Hayashi, S. Takahashi, and M. Yamamoto, “Magneto-plastic effect in nickel and nickel-cobalt alloy single crystals,” J. Phys. Soc. Jpn., 32, No. 4, 949–957 (1972).CrossRefGoogle Scholar
  6. 6.
    S. Hayashi, S. Takahashi, and M. Yamamoto, “Effect of an alternating magnetic field on the flow stress of Ni and Ni–Co,” Phys. Lett., 42, 171–172 (1972).CrossRefGoogle Scholar
  7. 7.
    E. L. Frankevich, V. I. Lesin, and A. I. Pristupa, “Spin-dependent reactions between structural defects and their effect on the plasticity of crystals in the magnetic field,” Pis’ma Zh. Éksp. Teor. Fiz., 75, Issue 2 (8), 415–427 (1978).Google Scholar
  8. 8.
    Yu. I. Golovin, “Magnetic plasticity of solids,” Fiz. Tverd. Tela, 46, No. 5, 769–803 (2004).Google Scholar
  9. 9.
    V. E. Oliker, T. Ya. Gridasova, V. L. Sirovatka, et al., “Effect of magnetic abrasive treatment on hightemperature oxidation of NiAl and NiAl–Re coatings,” Powder Metall. Met. Ceram., 48, No. 7–8, 466–477 (2009).CrossRefGoogle Scholar
  10. 10.
    V. E. Oliker, E. N. Eliseeva, T. Ya. Gridasova, et al., “Effect of magnetic treatment on the microstructure of NiAl–Re alloy,” Powder Metall. Met. Ceram., 49, No. 3–4, 245–252 (2010).CrossRefGoogle Scholar
  11. 11.
    V. E. Oliker, T. Ya. Gridasova, I. I. Timofeeva, et al., “Effect of magnetic treatment on the microstructure and abrasive resistance of WC–Co detonation-sprayed coatings,” Powder Metall. Met. Ceram., 51, No. 5–6, 345–352 (2012).CrossRefGoogle Scholar
  12. 12.
    M. A. Verzhakovskaya, Heterodiffusion of Aluminum in Iron in Pulsed Magnetic Field [in Russian], Author’s Abstract of PhD Thesis, Samara (2007).Google Scholar
  13. 13.
    G. V. Spivak, R. V. Telesnin, I. S. Kolotov, et al., Break of Domain Walls in Ferromagnetic Materials under Magnetic Fields [in Russian], (1970).
  14. 14.
    L. I. Tushinskii and A. V. Plokhov, Studying the Structure and Mechanical Properties of Coatings [in Russian], Nauka, Novosibirsk (1986), p. 198.Google Scholar
  15. 15.
    Yu. N. Podrezov, Ya. I. Evich, and N. P. Korzhova, “Fracture toughness of coatings from a eutectic alloy based on L12 intermetallic in the Al–Ti–Cr ternary system,” Élektron. Microsc. Prochn. Mater., Issue 128, 93–99 (2007).Google Scholar
  16. 16.
    J. F. Knott, Fundamentals of Fracture Mechanics, John Wiley–Halsted Press, New York (1973).Google Scholar
  17. 17.
    T. P. Shmyreva and G. M. Vorob’ev, “X-ray determination of macrostreses in coatings,” Probl. Prochn., No. 8, 71–73 (1983).Google Scholar
  18. 18.
    V. A. Barvinok and V. I. Bogdanovich, “Calculation of residual stresses in plasma-deposited coatings considering growing process,” Fiz. Khim. Obrab. Mater., No. 4, 95–100 (1981).Google Scholar
  19. 19.
    I. M. Fedorchenko, E. I. Ischchenko, and A. I. Bezykornov, “Residual stresses in plasma-deposited coatings,” Zashch. Pokr. Met., Issue No. 14, 55–57 (1980).Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • V. E. Oliker
    • 1
  • Yu. N. Podrezov
    • 1
  • I. T. Yarmatov
    • 1
  • T. Ya. Gridasova
    • 1
  • E. F. Grechishkin
    • 1
  • A. G. Gavrilenko
    • 1
  1. 1.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations