Powder Metallurgy and Metal Ceramics

, Volume 50, Issue 7–8, pp 538–543 | Cite as

Thermodynamic properties of Al–Eu liquid alloys

  • M. I. Ivanov
  • M. O. Shevchenko
  • V. V. Berezutskii
  • V. G. Kudin
  • V. S. Sudavtsova

The mixing enthalpies of Al–Eu liquid alloys are measured by the calorimetric method at 1300 to 1473 K. The thermodynamic properties of Al–Eu melts are calculated in the entire composition range using the ideal associated solution model. The thermodynamic activities of melt components show negative deviations from ideal behavior and the mixing enthalpies show significant exothermic effects. The minimum mixing enthalpy of Al–Eu melts is –23.0 ± 2.2 kJ/mole at xEu = 0.39.


aluminum europium melt calorimetry enthalpy activity 


  1. 1.
    K. A. Gschneidner and F. W. Calderwood, “The Al–Eu (aluminum–europium) system,” Bull. Alloys Phase Diagrams, 9, No. 6, 679 (1988).CrossRefGoogle Scholar
  2. 2.
    S. V. Meschel and O. J. Kleppa, “Thermochemistry of alloys of transition metals and lanthanide metals with some IIIB and IVB elements in the periodic table,” J. Alloys Compd., 321, No. 1, 183–200 (2001).CrossRefGoogle Scholar
  3. 3.
    C. Colinet, “The thermodynamic properties of rare earth metallic systems,” J. Alloys Compd., 225, No. 2, 409–422 (1995).CrossRefGoogle Scholar
  4. 4.
    K. A. Gschneidner and L. Eyring (eds.), Handbook on the Physics and Chemistry of Rare Earths, North- Holland Publishing Co., Amsterdam (1979).Google Scholar
  5. 5.
    N. I. Usenko, M. I. Ivanov, and V. V. Beresutski, “Mixing enthalpies of liquid Co–Ce and Co–Sm alloys,” J. Alloys Compd., 346, No. 1, L7–L10 (2002).CrossRefGoogle Scholar
  6. 6.
    V. V. Berezutskii and M. I. Ivanov, “Mixing enthalpies in samarium–transition metal melts,” Powder Metall. Met. Ceram., 48, No. 7–8, 454–461 (2009).CrossRefGoogle Scholar
  7. 7.
    A. N. Nesmeyanov, Steam Pressure of Chemical Elements [in Russian], Izd. AN SSSR, Moscow (1961), 396.Google Scholar
  8. 8.
    A. T. Dinsdale, “SGTE data for pure elements,” Calphad, 15, No. 4, 319–427 (1991).CrossRefGoogle Scholar
  9. 9.
    M. A. Turchanin, I. V. Belokonenko, and P. G. Agraval, “Use of the ideal associated solution theory for assessment of the temperature–composition dependence of the thermodynamic properties of binary melts,” Rasplavy, No. 1, 58–69 (2001).Google Scholar
  10. 10.
    V. A. Lebedev, V. I. Kober, and L. F. Yamshchikov, Thermochemistry of Rare-Earth and Actinoid Alloys [in Russian], Metallurgiya, Chelyabinsk (1989), p. 336.Google Scholar
  11. 11.
    M. C. Day and J. Selbin, Theoretical Inorganic Chemistry, Reinhold, New York (1962).Google Scholar
  12. 12.
    Yu. O. Esin, S. P. Kolesnikov, V. M. Baev, et al., “Enthalpies of formation of liquid binary alloys of aluminum and tin with lanthanum,” Zh. Fiz. Khim., 55, No. 6, 1587–1588 (1981).Google Scholar
  13. 13.
    Yu. O. Esin, G. M. Ryss, and P. V. Geld, “Enthalpies of formation of liquid alloys of cerium wiht aluminum,” Zh. Fiz. Khim., 53, No. 9, 2380–2381 (1979).Google Scholar
  14. 14.
    G. Cacciamani and R. Ferro, “Thermodynamic modeling of some aluminum–rare earth binary systems: Al– La, Al–Ce, Al–Nd,” Calphad, 25, No. 4, 583–597 (2001).CrossRefGoogle Scholar
  15. 15.
    F. Sommer, J. J. Lee, and B. Predel, “Thermodynamische Untersuchung flussiger Aluminium–Calcium, Aluminium–Strontium, Nickel − Magnesium und Nickel − Calcium Legierungen,” Z. Metallkunde, 74, No. 2, 100–104 (1983).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • M. I. Ivanov
    • 1
  • M. O. Shevchenko
    • 2
  • V. V. Berezutskii
    • 1
  • V. G. Kudin
    • 2
  • V. S. Sudavtsova
    • 2
  1. 1.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKievUkraine
  2. 2.Taras Shevchenko State Kiev UniversityKievUkraine

Personalised recommendations