Constitution of ZrCo–ZrIr alloys

  • O. L. Semenova
  • Yu. V. Kudryavtsev
  • V. M. Petyukh
  • A. V. Samelyuk
Physicochemical Materials Research

A physicochemical analysis is used to examine the constitution of ZrCo–ZrNi alloys for the first time. The equiatomic ZrCo and ZrIr phases are found to form a continuous series of solid solutions over a range from the subsolidus temperature to the starting temperature of martensite transformation in ZrIr. The substitution of Co for Ir stabilizes the high-temperature ZrIr phase with a CsCl type structure. The extrapolation of linear temperature dependence of cobalt content shows that the hightemperature phase is stable at room temperature in the alloy containing about 15 at.% Co.


zirconium iridium cobalt phase diagram martensitic transformation 


  1. 1.
    V. N. Eremenko, E. L. Semenova, and T. D. Shtepa, “Zr–Ir phase diagram,” Izv. AN SSSR. Metally, No. 5, 237–241 (1980).Google Scholar
  2. 2.
    V. N. Eremenko, E. L. Semenova, T. D. Shtepa, et al., “X-ray analysis of ZrRh and ZrIr phases at high temperatures,” Dokl. AN USSR. Ser. A, No. 10, 943 (1978).Google Scholar
  3. 3.
    E. L. Semenova and Yu. V. Kudryavtsev, “Structural phase transformation and shape memory effect in ZrRh and ZrIr,” JALCOM, 203, 165–168 (1994).Google Scholar
  4. 4.
    Yu. V. Kudryavtsev and L. Semenova, “On the martensitic transformation in the ZrIr compound,” in: Proc. Int. Symp. Iridium 2000 TMS Annual Meeting in Nashville (March 12–16), Tennessee (2000), pp. 147–154.Google Scholar
  5. 5.
    K. Shimizu, “Studies of martensitic transformations in the past 40 years,” in: Proc. ICOMAT–92, Monterey Institute for Advanced Studies, California (1993), pp. 13–24.Google Scholar
  6. 6.
    K. Otsuka and X. Ren, “Martensitic transformations in nonferrous shape memory alloys,” Mat. Sci. Eng. A, 273275, No. 12, 89–105 (1999).CrossRefGoogle Scholar
  7. 7.
    V. V. Martynov and L. G. Handros, “Effect of stresses on the shape memory effect of the copper–aluminum–nickel alloys,” Fiz. Met. Metalloved., 39, No. 5, 1037–1043 (1975).Google Scholar
  8. 8.
    H. Ran and Z. Du, “Thermodynamic assessment of the Ir–Zr system,” JALCOM, 413, 101–105 (2006).Google Scholar
  9. 9.
    O. Guo and O. J. Kleppa, “The standard enthalpies of formation of the compounds of early transition metals with late transition metals and with noble metals as determined by Kleppa and coworkers at the University of Chicago: A review,” JALCOM, 321, 169–182 (2001).Google Scholar
  10. 10.
    T. B. Massalski (ed.), Binary Alloy Phase Diagrams, Amer. Soc. Met., Metals Park, Ohio (1986), Vol. 1–2.Google Scholar
  11. 11.
    D. Hossain and I. R. Harris, “A study of ZrCo and related ternary phases represented by the general formula, Zr50Co50–xNix,” J. Less-Com. Met., 37, 35–57 (1974).CrossRefGoogle Scholar
  12. 12.
    S. Shebut, E. M. Sokolovskaya, I. G. Sokolova, et al., “Phase equilibria in the Pd–Zr–Fe system,” Vest. Mosk. Univ. Ser. 2. Khimiya, 29, No. 4, 412–414 (1988).Google Scholar
  13. 13.
    R. M. Waterstrat, L. A. Bendersky, and R. Kuentzler, “Deformation twins and martensite in ductile B2 alloys of the Zr (RuPd) system,” in: Proc. ICOMAT, Monterey Institute for Advanced Studies, California (1993), pp. 545–550.Google Scholar
  14. 14.
    L. A. Bendersky, J. K. Stalick, R. Portier, et al., “Crystallographic structures and phase transformations in ZrPd,” JALCOM, 236, 19–25 (1996).Google Scholar
  15. 15.
    V. N. Kuznetsov, G. P. Zhmurko, and E. M. Sokolovskaya, “Phase equilibria and structural stability of intermetallics in the Pt–Pd–Hf and Pt–Pd–Zr systems,” J. Less-Com. Met., 163, No. 1, 1–8 (1990).CrossRefGoogle Scholar
  16. 16.
    E. L. Semenova, V. M. Petyukh, and Yu. V. Kudryavtsev, “The effect of cobalt and nickel on transformation in TiRh,” JALCOM, 230, No. 2, 115–119 (1995).Google Scholar
  17. 17.
    E. L. Semenova, V. E. Listovnichii, V. M. Petyukh, et al., “Constitution of alloys in the TiNi–ScNi quasibinary system,” in: Phase Equilibria, Stability of Phases, and Metastable States in Metal Systems [in Russian], Inst. Probl. Materialoved. NAN Ukrainy, Kiev (1993), pp. 93–98.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • O. L. Semenova
    • 1
  • Yu. V. Kudryavtsev
    • 1
  • V. M. Petyukh
    • 1
  • A. V. Samelyuk
    • 1
  1. 1.Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of UkraineKievUkraine

Personalised recommendations