Advertisement

Powder Metallurgy and Metal Ceramics

, Volume 49, Issue 3–4, pp 201–206 | Cite as

The Al2O3–HfO2–Y2O3 phase diagram. IV. Vertical sections

  • S. M. Lakiza
  • Ya. S. Tishchenko
  • V. P. Red’ko
  • L. M. Lopato
Physicochemical Materials Research

For better presentation of the Al2O3–HfO2–Y2O3 phase diagram over wide ranges of temperatures and concentrations, three vertical sections are plotted to show interactions in the ternary system. The Y2O3 bisector shows the Y2O3-rich region of the Al2O3–HfO2–Y2O3 phase diagram and explains the mechanism of XHAB phase transformations for Y2O3 solid solutions. The 10 mol.% HfO2 (10H) isopleth shows the Al2O3–HfO2–Y2O3 structure in the region adjacent to the Al2O3–Y2O3 binary bounding system. The HfO2 bisector shows the structure of the HfO2-rich region and the mechanism of FTM phase transformations for HfO2 solid solutions.

Keywords

hafnia alumina yttria phase diagram vertical sections eutectic materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Lakiza, Ya. S. Tishchenko, V. P. Red’ko, et al., “Al2O3–HfO2–Y2O3 phase diagram. I. Isothermal sections at 1250 and 1650°C,” Powder Metall. Met. Ceram., 48, No. 3–4, 225–233 (2009).CrossRefGoogle Scholar
  2. 2.
    S. M. Lakiza, Ya. S. Tishchenko, Z. O. Zaitseva, et al., “The Al2O3–HfO2–Y2O3 phase diagram. II. Liquidus surface,” Powder Metall. Met. Ceram., 48, No. 11–12, 693–699 (2009).CrossRefGoogle Scholar
  3. 3.
    S. M. Lakiza, Ya. S. Tishchenko, L. M. Lopato, and A. O. Sus’, “The Al2O3–HfO2–Y2O3 phase diagram. III. Solidus surface and phase equilibria in crystallization of alloys,” Powder Metall. Met. Ceram., 49, No. 1–2, 71–78 (2010).CrossRefGoogle Scholar
  4. 4.
    L. M. Lopato, A. V. Shevchenko, A. A. Frolov, and V. P. Red’ko, “Fusion and dispersion of oxide materials in a “cold” crucible and in furnaces with concentrated radiant heating,” Powder Metall. Met. Ceram., 44, No. 7–8, 335–340 (2005).CrossRefGoogle Scholar
  5. 5.
    Y. Waku, S. Sakata, A. Mitani, and K. Shimizu, “A novel oxide composite reinforced with a ductile phase for very high temperature structural materials,” Mat. Res. Innovat., 2, No. 2, 94–100 (2001).Google Scholar
  6. 6.
    Y. Waku, S. Sakata, A. Mitani, et al., “Temperature dependence of flexural strength and microstructure of Al2O3/Y3Al5O12/ZrO2 ternary melt growth composites,” J. Mat. Sci., 37, No. 14, 2975–2982 (2002).CrossRefGoogle Scholar
  7. 7.
    Y. Murayama, S. Hanada, J. H. Lee, et al., “High-temperature strength of directionally solidified Al2O3/YAG/ZrO2 eutectic composite,” Mat. Sci. Forum, 475–479, 1295–1300 (2005).CrossRefGoogle Scholar
  8. 8.
    V. P. Red’ko, Physicochemical Study of M 4 Zr(Hf) 3 O 12 Compounds in ZrO 2 (HfO 2 )–Rare-Earth Oxide Systems [in Russian], Author’s Abstract of PhD Thesis, Kiev (1990), p. 20.Google Scholar
  9. 9.
    L. M. Lopato, A. V. Shevchenko, and G. I. Gerasimyuk, “System HfO2–Al2O3,” AN SSSR. Neorg. Mater., 12, No. 9, 1623–1626 (1976).Google Scholar
  10. 10.
    N. A. Toropov, I. A. Bondar, F. Ya. Galakhov, et al., “Phase equilibria in the yttria–alumina system,” Izv. AN SSSR. Ser. Khim., No. 7, 1158–1164 (1964).Google Scholar
  11. 11.
    I. A. Bondar, L. N. Koroleva, and E. T. Bezruk, “Physicochemical properties of yttrium aluminates and gallates,” Izv. AN SSSR. Neorg. Mater., 20, No. 2, 257–261 (1984).Google Scholar
  12. 12.
    B. Cocayne, “The uses and enigmas of the Al2O3–Y2O3 phase system,” J. Less-Common Met., 114, No. 1, 199–206 (1985).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • S. M. Lakiza
    • 1
  • Ya. S. Tishchenko
    • 1
  • V. P. Red’ko
    • 1
  • L. M. Lopato
    • 1
  1. 1.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations