Skip to main content
Log in

The Al2O3–HfO2–Y2O3 phase diagram. IV. Vertical sections

  • Physicochemical Materials Research
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

For better presentation of the Al2O3–HfO2–Y2O3 phase diagram over wide ranges of temperatures and concentrations, three vertical sections are plotted to show interactions in the ternary system. The Y2O3 bisector shows the Y2O3-rich region of the Al2O3–HfO2–Y2O3 phase diagram and explains the mechanism of XHAB phase transformations for Y2O3 solid solutions. The 10 mol.% HfO2 (10H) isopleth shows the Al2O3–HfO2–Y2O3 structure in the region adjacent to the Al2O3–Y2O3 binary bounding system. The HfO2 bisector shows the structure of the HfO2-rich region and the mechanism of FTM phase transformations for HfO2 solid solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. M. Lakiza, Ya. S. Tishchenko, V. P. Red’ko, et al., “Al2O3–HfO2–Y2O3 phase diagram. I. Isothermal sections at 1250 and 1650°C,” Powder Metall. Met. Ceram., 48, No. 3–4, 225–233 (2009).

    Article  CAS  Google Scholar 

  2. S. M. Lakiza, Ya. S. Tishchenko, Z. O. Zaitseva, et al., “The Al2O3–HfO2–Y2O3 phase diagram. II. Liquidus surface,” Powder Metall. Met. Ceram., 48, No. 11–12, 693–699 (2009).

    Article  CAS  Google Scholar 

  3. S. M. Lakiza, Ya. S. Tishchenko, L. M. Lopato, and A. O. Sus’, “The Al2O3–HfO2–Y2O3 phase diagram. III. Solidus surface and phase equilibria in crystallization of alloys,” Powder Metall. Met. Ceram., 49, No. 1–2, 71–78 (2010).

    Article  CAS  Google Scholar 

  4. L. M. Lopato, A. V. Shevchenko, A. A. Frolov, and V. P. Red’ko, “Fusion and dispersion of oxide materials in a “cold” crucible and in furnaces with concentrated radiant heating,” Powder Metall. Met. Ceram., 44, No. 7–8, 335–340 (2005).

    Article  CAS  Google Scholar 

  5. Y. Waku, S. Sakata, A. Mitani, and K. Shimizu, “A novel oxide composite reinforced with a ductile phase for very high temperature structural materials,” Mat. Res. Innovat., 2, No. 2, 94–100 (2001).

    Google Scholar 

  6. Y. Waku, S. Sakata, A. Mitani, et al., “Temperature dependence of flexural strength and microstructure of Al2O3/Y3Al5O12/ZrO2 ternary melt growth composites,” J. Mat. Sci., 37, No. 14, 2975–2982 (2002).

    Article  CAS  Google Scholar 

  7. Y. Murayama, S. Hanada, J. H. Lee, et al., “High-temperature strength of directionally solidified Al2O3/YAG/ZrO2 eutectic composite,” Mat. Sci. Forum, 475–479, 1295–1300 (2005).

    Article  Google Scholar 

  8. V. P. Red’ko, Physicochemical Study of M 4 Zr(Hf) 3 O 12 Compounds in ZrO 2 (HfO 2 )–Rare-Earth Oxide Systems [in Russian], Author’s Abstract of PhD Thesis, Kiev (1990), p. 20.

  9. L. M. Lopato, A. V. Shevchenko, and G. I. Gerasimyuk, “System HfO2–Al2O3,” AN SSSR. Neorg. Mater., 12, No. 9, 1623–1626 (1976).

    CAS  Google Scholar 

  10. N. A. Toropov, I. A. Bondar, F. Ya. Galakhov, et al., “Phase equilibria in the yttria–alumina system,” Izv. AN SSSR. Ser. Khim., No. 7, 1158–1164 (1964).

  11. I. A. Bondar, L. N. Koroleva, and E. T. Bezruk, “Physicochemical properties of yttrium aluminates and gallates,” Izv. AN SSSR. Neorg. Mater., 20, No. 2, 257–261 (1984).

    CAS  Google Scholar 

  12. B. Cocayne, “The uses and enigmas of the Al2O3–Y2O3 phase system,” J. Less-Common Met., 114, No. 1, 199–206 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Lakiza.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 49, No. 3–4 (472), pp. 95–101, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakiza, S.M., Tishchenko, Y.S., Red’ko, V.P. et al. The Al2O3–HfO2–Y2O3 phase diagram. IV. Vertical sections. Powder Metall Met Ceram 49, 201–206 (2010). https://doi.org/10.1007/s11106-010-9222-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-010-9222-8

Keywords

Navigation