Advertisement

Sintering of self-reinforced ceramics in the ZrO2–Y2O3–CeO2–Al2O3 system

  • A. V. Shevchenko
  • E. V. Dudnik
  • A. K. Ruban
  • V. P. Red’ko
  • L. M. Lopato
Article

The formation of self-reinforced composites in the ZrO2–Y2O3–CeO2–Al2O3 system is investigated. Depending on different sintering conditions, plates of CeAlO3, T-ZrO2, and α-Al2O3 are formed in the matrix based on a solid solution of ZrO2. The self-reinforced composite with fracture toughness 17–20 MPa ⋅ m0.5 is obtained in optimum sintering conditions. In this composite, α-Al2O3 plates as well as individual Ce2O3 ⋅ 11Al2O3 plates are arranged in the matrix based on T-ZrO2. Selfreinforced composites in the ZrO2–Y2O3–CeO2–Al2O3 system have a considerable potential for various engineering ceramic materials with tailored combinations of properties, e.g., for medical applications (surgical tools and bioinert implants).

Keywords

ZrO2–Y2O3–CeO2–Al2O3 system self-reinforcing sintering α-Al2O3 plate zirconia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Shevchenko, A. K. Ruban, and E. V. Dudnik, “Advanced zirconia ceramics,” Ogneupory Tekh. Keram., No. 9, 2–8 (2000).Google Scholar
  2. 2.
    J.-D. Lin and J. Duh, “Fracture toughness and hardness of ceria- and yttria-doped tetragonal zirconia ceramics,” Mater. Chem. Phys., 78, 253–261 (2002).CrossRefGoogle Scholar
  3. 3.
    B. Bastid, P. Canale, and P. Odier, “Characterization of a new ternary Ce-tetragonal zirconia,” J. Eur. Ceram. Soc., 5, 289–293 (1989).CrossRefGoogle Scholar
  4. 4.
    F. F. Lange, “Transformation toughening. Part 4. Fabrication, fracture toughness and strength of Al2O3–ZrO2 composites,” J. Mater. Sci., 17, 247–254 (1982).CrossRefADSGoogle Scholar
  5. 5.
    A. V. Shevchenko, A. K. Ruban, E. V. Dudnik, et al., “Formation of self-reinforced gradient ceramic composites,” Functional Mat., No. 1, 67–70 (2001).Google Scholar
  6. 6.
    A. V. Shevchenko, E. V. Dudnik, V. A. Dubok, et al., “Biocompatible implants based on nanocrystalline ZrO2 powders,” Tekh. Mashinostr., No. 2 (58), 32–35 (2006).Google Scholar
  7. 7.
    G. S. Oleinik, Self-Reinforced Ceramic Materials [in Ukrainian], IPMA NASU, Kiev (1993), p. 46.Google Scholar
  8. 8.
    A. V. Shevchenko, E. V. Dudnik, A. K. Ruban, et al., “Hydrothermal synthesis of nanocrystalline powders in the ZrO2–Y2O3–CeO2 system,” Powder Metall. Met. Ceram., 46, No. 1–2, 18 –25 (2007).CrossRefGoogle Scholar
  9. 9.
    E. V. Dudnik, A. V. Shevchenko, A. K. Ruban, et al., “Synthesis and properties of nanocrystalline 90 wt.% ZrO2(Y2O3, CeO2)–10 wt.% A12O3 powder,” Inorg. Mat., 44, No. 4, 409–413 (2008).Google Scholar
  10. 10.
    V. V. Scorokhod and S. M. Solonin, Physical-Metallurgical Bases of Powder Sintering [in Russian], Metallurgy, Moscow (1984), p. 159.Google Scholar
  11. 11.
    Yu. D. Tret’yakov, Solid-State Reactions [in Russian], Chemistry, Moscow (1978), p. 360.Google Scholar
  12. 12.
    V. Longo and D. Minichelli, “X-ray characterization of Ce2Zr3O10,” J. Am. Ceram. Soc., 56, No. 11, 600 (1973).CrossRefGoogle Scholar
  13. 13.
    W. Pyda, K. Haberko, and Z. Zurek, “Zirconia stabilized with a mixture of the rare earth oxides,” J. Eur. Ceram. Soc., 10, 453–459 (1992).CrossRefGoogle Scholar
  14. 14.
    E. Lucchini, S. Maschio, and E. Saldor, “Influenza delle condizioni di sinterizazione sulle proprieta meccamiche di una ”lega” ZrO2–CeO2 10.3 mol.%,” Ceram. Acta., 3, No. 2, 33–39 (1991).Google Scholar
  15. 15.
    A. I. Leonov, High-Temperature Chemistry of the Cerium Oxygen Compounds [in Russian], Leningrad (1969).Google Scholar
  16. 16.
    D. Fan and L.-Q. Chen, “Computer simulation of grain growth and Ostwald ripening in alumina-zirconia two-phase composites,” J. Am. Ceram. Soc., 80, No. 7, 1773–1780 (1997).Google Scholar
  17. 17.
    S.-J. Cho, K.-H. Kim, D.-J. Kim, and K.-J. Yoon, “Abnormal grain growth at the interface of centrifugally cast alumina bilayer during sintering,” J. Am. Ceram. Soc., 83, No. 7, 1773–1776 (2000).Google Scholar
  18. 18.
    A. G. Evans and E. A. Charles, “Fracture toughness determinations by indentation,” J. Am. Ceram. Soc., 59, No. 7, 371–372 (1976).CrossRefGoogle Scholar
  19. 19.
    K. Niihara, R. Morena, and D. P. H. Hasselman, “Evaluation of K 1c of brittle solids by the indentation method with low crack-to indent rates,” J. Mat. Sci. Let., 1, No. 1, 13–16 (1982).CrossRefGoogle Scholar
  20. 20.
    D. K. Shetty, A. R. Rosenfield, and W. H. Duckworth, “Indenter flow geometry and fracture toughness estimate for a glass-ceramic,” J. Am. Ceram. Soc., 68, No. 10, C282–C284 (1983).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • A. V. Shevchenko
    • 1
  • E. V. Dudnik
    • 1
  • A. K. Ruban
    • 1
  • V. P. Red’ko
    • 1
  • L. M. Lopato
    • 1
  1. 1.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations