Advertisement

Powder Metallurgy and Metal Ceramics

, Volume 48, Issue 11–12, pp 718–722 | Cite as

Copper tungstate produced from tungsten-containing waste as addition to antifriction material

  • A. G. Kostornov
  • V. V. Pasichnyi
  • O. I. Fushchich
  • V. T. Varchenko
  • V. S. Korchemnaya
Exchange of Experience

The paper examines the use of tungsten-containing waste to develop a copper-based microheterogeneous antifriction material. The effect of copper tungstate CuWO4 on the tribotechnical properties of antifriction material Cu–Sn–CuWO4–MoS2 is analyzed at a pressure between 1.25 and 17.5 MPa and sliding speeds of 0.5 and 1.0 m/sec with liquid lubrication. It is established that the composite antifriction material Cu–Sn–CuWO4–MoS2 can perform up to 17.5 MPa at a sliding speed of 0.5 m/sec and up to 12.5 MPa at 1 m/sec. The antifriction composite Cu–9 Sn–7.5 CuWO4–5 MoS2 has the optimal friction coefficient (0.135–0.01) and wear (6.0–3.1 μm/km) between 1.25–12.5 MPa under the above conditions and can perform up to 150°C. When Cu–Sn–CuWO4–MoS2 is sintered in hydrogen, CuWO4 decomposes and reduces to pure metal, and tungsten particles reinforce the matrix. The antifriction material Cu–Sn–CuWO4–MoS2 is microheterogeneous. The load-bearing component (matrix) represents an α-solid solution of tin in copper. Fine tungsten particles that are uniformly distributed in the matrix reinforce it and improve the bearing capacity of the material. Inclusions of molybdenum disulphide contribute to the formation of secondary structures on the friction surface and decrease the friction coefficient.

Keywords

copper tungsten tin copper-based composite antifriction material alloying elements strengthening microheterogeneous structure pressure sliding speed temperature friction coefficient wear 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Pasichnyi, V. S. Korchemnaya, S. A. Ostapenko, and M. S. Pasichnaya, “On the production of nanoand microsized WO3 powders in thermal treatment of tungsten-containing waste in a solar furnace,” in: Nanosystems, Nanomaterials, Nanotechnologies [in Russian] (Collected Scientific Papers), Issue 4, Inst. Metallofiz. NAN Ukrainy (2006), pp. 871–876.Google Scholar
  2. 2.
    V. V. Pasichnyi, V. S. Korchemnaya, S. A. Ostapenko, and M. S. Pasichnaya, “Technique for the thermal treatment of tungsten-containing industrial waste using focused solar energy,” in: Proc. 15th Int. Sci.-Tekh. Conf. Ecological and Industrial Safety. Water and Air Protection. Waste Disposal [in Russian], UkrVODGEO, Kharkov (2007), Vol. 2, p. 278.Google Scholar
  3. 3.
    V. V. Pasichnyi, “Examination of the physical and technical properties of materials and coatings using concentrated solar energy,” Powder Metall. Met. Ceram., 34, No. 7–8, 475–483 (1996).CrossRefGoogle Scholar
  4. 4.
    A. N. Zelikman and L. S. Nikitina, Tungsten [in Russian], Metallurgiya, Moscow (1978), p. 272.Google Scholar
  5. 5.
    A. N. Zelikman, Molybdenum [in Russian], Metallurgiya, Moscow (1970), p. 440.Google Scholar
  6. 6.
    I. M. Fedorchenko and L. I. Pugina, Sintered Composite Antifriction Materials [in Russian], Naukova Dumka, Kiev (1980), p. 404.Google Scholar
  7. 7.
    E. E. Bisson, R. L. Johnson, and M. A. Swikert, Friction, “Wear and surface damage of metals as affected by solid surface films: A review of N.A.C.A. research,” in: Proc. Conf. Lubrication and Wear, The Institute of Mechanical Engineers, London (1957).Google Scholar
  8. 8.
    P. J. MacDonald, Sintered Rubbing Contact Material and Method for Producing Same, Patent 3205556 USA, Published 14 September (1965).Google Scholar
  9. 9.
    V. V. Skorokhod, V. V. Panichkina, Yu. M. Solonin, and I. V. Uvarova, Particulate Powders of Refractory Metals [in Russian], Naukova Dumka, Kiev (1978), p. 172.Google Scholar
  10. 10.
    I. V. Kragel’skii and V. V. Alisina (eds.), Friction, Wear, and Lubrication [in Russian], Mashinostroenie, Moscow (1978), Vol. 1, p. 400.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • A. G. Kostornov
    • 1
  • V. V. Pasichnyi
    • 1
  • O. I. Fushchich
    • 1
  • V. T. Varchenko
    • 1
  • V. S. Korchemnaya
    • 1
  1. 1.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations