Advertisement

Powder Metallurgy and Metal Ceramics

, Volume 48, Issue 9–10, pp 560–568 | Cite as

Dependence of the resistivity of hot-pressed Si3N4–ZrC composites on their composition

  • E. V. Kirilenko
  • A. I. Derii
  • V. Ya. Petrovskii
Refractory and Ceramic Materials

The paper examines the microstructure, phase composition, and resistivity of Si3N4-based composites depending on ZrC concentration and isothermal holding temperature. It is established that ZrCxNy forms in the composites during hot pressing. Its amount is determined only by isothermal holding temperature. It is shown that the resistivity and porosity of the composites depend not so much on the rate of chemical reactions as on the agglomeration of the starting powders when mixed. Addition of 10 to 20 vol.% zirconium carbide substantially changes the aggregation–disaggregation ratio. The reproducible resistivity of 0.5–10 Ω ∙ cm is reached. Thus these materials can be used as a resistive layer of small-size converters to perform under intensive heat exchange.

Keywords

silicon nitride zirconium carbide zirconium carbonitride resistive composite phase composition resistivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Ya. Petrovsky and S. R. Zbigniew, “Densification, microstructure and properties of electroconductive Si3N4–TaN composites. I. Densification and microstructure,” J. Europ. Ceram. Soc., 21, 219–235 (2001).CrossRefGoogle Scholar
  2. 2.
    V. Ya. Petrovsky and S. R. Zbigniew, “Densification, microstructure and properties of electroconductive Si3N4–TaN composites. II. Electrical and mechanical properties,” J. Europ. Ceram. Soc., 21, 237–244 (2001).CrossRefGoogle Scholar
  3. 3.
    G. G. Gnesin, E. I. Gervits, L. A. Shipilova, et al., “A Si3N4–ZrC resistive composite I. Conductivity concentration dependence,” Powder Metall. Met. Ceram., 29, No. 4, 325–328 (1990).Google Scholar
  4. 4.
    G. G. Gnesin, E. I. Gervits, L. A. Shipilova, et al., “Si3N4–ZrC resistive composition. II. Temperature dependence of electrical conductivity,” Powder Metall. Met. Ceram., 29, No. 6, 483–486 (1990).CrossRefGoogle Scholar
  5. 5.
    V. Petrovskij, Silicon Nitride Ceramics [in Polish], ITME, Warsaw (1993), p. 53.Google Scholar
  6. 6.
    T. Ya. Kosolapova, Carbides [in Russian], Metallurgiya, Moscow (1968), p. 299.Google Scholar
  7. 7.
    G. P. Shveikin, Yu. G. Alyamovskii, Yu. G. Zainulin, et al., Variable-Composition Compounds [in Russian], Sverdlovsk (1984), p. 300.Google Scholar
  8. 8.
    A. I. Gusev and A. A. Rempel’, Structural and Phase Transitions in Nonstoichiometric Compounds [in Russian], Nauka, Moscow (1988), p. 308.Google Scholar
  9. 9.
    G. V. Samsonov, Nitrides [in Russian], Naukova Dumka, Kiev (1969), p. 380.Google Scholar
  10. 10.
    G. N. Dul’nev, V. I. Malarev, and V. V. Novikov, “Effect of particle size on the critical concentration of the conducting phase in P/M materials,” Powder Metall. Met. Ceram., 31, No. 1, 59–63 (1992).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2009

Authors and Affiliations

  • E. V. Kirilenko
    • 1
  • A. I. Derii
    • 1
  • V. Ya. Petrovskii
    • 1
  1. 1.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations