Advertisement

Powder Metallurgy and Metal Ceramics

, Volume 47, Issue 11–12, pp 660–668 | Cite as

Effect of microwave heating on diffusion in KCl–KBr single crystals

  • O. I. Get’man
  • V. V. Panichkina
  • P. Ya. Radchenko
  • A. V. Samelyuk
  • V. V. Skorokhod
  • A. G. Eremeev
  • I. V. Plotnikov
  • V. P. Matsokin
Article

The interdiffusion in single-crystal KCl–KBr diffusion couples, which form continuous solid solutions, is examined under microwave heating (24 GHz). The results are compared with data obtained under conventional heating. Electron microprobe analysis is used to examine the composition of the diffusion zone and microscopic analysis is used to examine its microstructure. It is shown that ion interdiffusion occurs faster under microwave heating than under conventional heating. The ascending diffusion of Cl and Br ions is revealed under microwave heating. The microstructure of the diffusion zone between KCl and KBr single crystals is highly heterogeneous after microwave heating and markedly different from that after conventional heating.

Keywords

KCl and KBr single crystals microwave heating interdiffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. I. Rybakov, V. E. Semenov, G. Link, and M. Thumm, “Preferred orientation of pores in ceramics under heating by a linearly polarized microwave field,” J. Appl. Phys., 101, 0849 (2007).CrossRefGoogle Scholar
  2. 2.
    Ya. E. Geguzin, Yu. I. Boiko, and V. P. Strelkov, “Misfit dislocation in the diffusion zone of alkali haloid crystals,” Fiz. Tverd. Tela, 12, No. 8, 2256–2263 (1970).Google Scholar
  3. 3.
    Ya. E. Geguzin and Yu. I. Boiko, “Frenkel effect in interdiffusion in alkali haloid single crystals (KCl–KBr system),” Fiz. Tverd. Tela, 9, No. 5, 1375–1381 (1967).Google Scholar
  4. 4.
    Ya. E. Geguzin, Diffusion Zone [in Russian], Nauka, Moscow (1979), p. 344.Google Scholar
  5. 5.
    Yu. Bykov, A. Eremeev, M. Glyavin, et al., “24–84 GHz gyrotron systems for technological microwave applications,” IEEE Trans. Plasma Sci., 32, No. 1, 67–72 (2004).CrossRefADSGoogle Scholar
  6. 6.
    M. Sparks, D. F. King, and D. L. Mills, “Simple theory of microwave absorption in alkali halides,” Phys. Rev. B, 26, No. 12, 6987–7002 (1982).CrossRefADSGoogle Scholar
  7. 7.
    V. I. Emel’yanov, V. S. Makin, and I. F. Uvarova, “Formation of ordered vacancy deformation structures on metal surface exposed to laser radiation,” Fiz. Khim. Obrab. Mater., No. 2, 12–19 (1990).Google Scholar
  8. 8.
    V. O. Nadtochii, M. M. Golodenko, A. Z. Kalimbet, et al., “Structural changes in Ge surface layer under laser pulses,” Fiz. Khim. Tverd. Tela, 4, No. 3, 556–559 (2003).Google Scholar
  9. 9.
    D. Moskal, V. Nadtochy, and Golodenko, “Formation of periodic structure in GaAs near-surface layers irradiated by laser pulse,” Photoelectronics, 14, 100–103 (2005).Google Scholar
  10. 10.
    L. A. Ageev, M. V. Pogrebnyak, and V. K. Miloslavskii, “Optical microscopy of quasiperiodic structures induced by existing waveguide TE and TM modes in AgCl–Ag films exposed to a laser beam,” Opt. Spektroskop., 97, No. 2, 346–351 (2004).Google Scholar
  11. 11.
    Ya. E. Geguzin, “Ascending diffusion and diffusion aftereffect,” Usp. Fiz. Nauk, 149, No. 1, 149–159 (1986).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • O. I. Get’man
    • 1
  • V. V. Panichkina
    • 1
  • P. Ya. Radchenko
    • 1
  • A. V. Samelyuk
    • 1
  • V. V. Skorokhod
    • 1
  • A. G. Eremeev
    • 2
  • I. V. Plotnikov
    • 2
  • V. P. Matsokin
    • 3
  1. 1.Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKievUkraine
  2. 2.Institute of Applied Physics, Russian Academy of SciencesNizhnii NovgorodRussia
  3. 3.Karazin Kharkov National UniversityKharkovUkraine

Personalised recommendations