Powder Metallurgy and Metal Ceramics

, Volume 47, Issue 11–12, pp 630–634 | Cite as

High-temperature interaction of carbon ferromanganese and copper powders

  • G. A. Baglyuk
  • L. A. Sosnovskii
  • M. B. Golovkova
  • A. A. Mamonova
  • N. V. Minakov

The thermal synthesis of a master alloy produced from a mixture of carbon ferromanganese and electrolytic copper powders and interaction of the mixture components in various heating conditions are examined. It is shown that the interaction mainly involves the extraction of manganese dissolved in γ-Fe with copper melt followed by the formation (in cooling) of viscous Cu−Mn phases.


master alloy ferromanganese copper powder alloy formation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. H. Yaverbaum (ed.), Technology of Metal Powders — Recent Developments, Noyes Data Corp., Park Ridge, New Jersey (1980).Google Scholar
  2. 2.
    W. Schatt, Powder Metallurgy — Sintered and Composite Materials [in German], VEB Deutscher Verlag fur Grundstoffindustrie, Leipzig (1977).Google Scholar
  3. 3.
    I. D. Radomysel’skii and S. G. Napara-Volgina, Producing Alloy Powders with Diffusion Method and Their Use [in Russian], Naukova Dumka, Kiev (1988), p. 136.Google Scholar
  4. 4.
    P. N. Ostrik, M. M. Gasik, and V. D. Pirog, Metallurgy of Spongy and Powder Master Alloys [in Russian], Tekhnika, Kiev (1992), p. 127.Google Scholar
  5. 5.
    I. D. Radomyselskii, G. G. Serdyuk, and N. I. Shcherban’, Structural Powder Materials [in Russian], Tekhnika, Kiev (1985), p. 152.Google Scholar
  6. 6.
    N. P. Lyakishev (ed.), Phase Diagrams of Binary Metal Systems: Handbook [in Russian], Vol. 2 (in 3 Vols.), Mashinostroenie, Moscow (1997), p. 1024.Google Scholar
  7. 7.
    V. V. Skorokhod and S. M. Solonin, Physics and Metallurgy of Powder Sintering [in Russian], Metallurgiya, Moscow (1984), p. 159.Google Scholar
  8. 8.
    E. Dudrova, M. Kabatova, R. Bidulsky, and A. S. Wronski, “Industrial processing, microstructure and mechanical properties of Fe–(2–4) Mn–(0, 85) Mo–(0, 3–0, 7) C sintered steels,” Powder Metall., 47, No. 2, 181–190 (2004).CrossRefGoogle Scholar
  9. 9.
    E. Dudrova and M. Kabatova, “Microstructure, mechanical properties and fracture behavior of manganese sintered steels,” Deformation and Fracture in Structural PM Materials, 1, 107–115 (2002).Google Scholar
  10. 10.
    Yu. G. Dorofeev, L. G. Marinenko, and V. I. Ustimenko, Structural Powder Materials and Products [in Russian], Metallurgiya, Moscow (1986), p. 144.Google Scholar
  11. 11.
    I. M. Fedorchenko, I. G. Slys’, and L. A. Sosnovskii, “Technology of sintering of powder metallurgical materials without a circulating protective atmosphere,” Powder Metall. Met. Ceram., 11, No. 5, 361–366 (1972).CrossRefGoogle Scholar
  12. 12.
    L. N. Gasik, V. S. Ignat’ev, and M. I. Gasik, Structure and Quality of Industrial Alloys and Master Alloys [in Ukrainian], Tekhnika, Kiev (1985), p. 152.Google Scholar
  13. 13.
    F. A. Shank, Constitution of Binary Alloys, McGraw Hill, New York (1970).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • G. A. Baglyuk
    • 1
  • L. A. Sosnovskii
    • 1
  • M. B. Golovkova
    • 1
  • A. A. Mamonova
    • 1
  • N. V. Minakov
    • 1
  1. 1.Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations