Advertisement

Powder Metallurgy and Metal Ceramics

, Volume 47, Issue 9–10, pp 607–615 | Cite as

Corrosion behavior of dispersion-strengthened ferritic Fe-13Cr-2Mo steel in lead melt

  • O. I. Eliseeva
  • V. P. Tsisar
  • I. I. Ivanova
  • A. M. Demidik
Article

The corrosion behavior of dispersion-strengthened ferritic Fe-13Cr-2Mo (TiO2) steel in oxygen-containing lead melt is investigated at 550 and 650°C. It is determined that duplex magnetite scale is formed on the steel surface at 550°C and oxygen concentration of about 10−3 wt.% in the lead melt. The scale grows symmetrically with regard to the initial steel-melt interface toward the liquid metal and matrix. The outer oxide layer consists of Fe3O4, the upper part of which contains plumboferrites, while the inner oxide is Cr-rich spinel Fe1+xCr2−xO4. As the scale grows, the imperfection of the duplex oxide increases. The oxidation intensifies as interaction temperature increases to 650°C. The scale loses its protective properties and becomes penetrable for lead. With decreasing oxygen concentration in the lead melt (10−5 wt.%), the scale growth becomes slower while the corrosion resistance of steel increases.

Keywords

Fe-13Cr-2Mo (TiO2) steel lead melt oxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Power Reactors and Sub-Critical Blanket Systems with Lead and Lead-Bismuth as Coolant and/or Target Material, Int. Atomic Energy Agency, Vienna (2003), p. 224.Google Scholar
  2. 2.
    R. G. Ballinger and J. Lim, “An overview of corrosion issues for the design and operation of high-temperature lead-and lead-bismuth-cooled reactor systems,” Nuclear Technol., 147, No. 3, 418–435 (2004).Google Scholar
  3. 3.
    R. L. Klueh, D. S. Gelles, and S. Litsukawa, “Ferritic/martensitic steels—overview of recent results,” J. Nucl. Mater., 307-311, 455–465 (2002).CrossRefADSGoogle Scholar
  4. 4.
    S. Ukai and M. Fujiwara, “Perspective of ODS alloys application in nuclear environments,” J. Nucl. Mater., 307-311, 749–757 (2002).CrossRefADSGoogle Scholar
  5. 5.
    B. A. Shmatko and A. E. Rusanov, “Oxide film protection of materials in melts of lead and bismuth, ” Fiz.-Khim. Mekh. Mater., No. 5, 49–58 (2000).Google Scholar
  6. 6.
    O. Yeliseyeva, G. Benamati, and V. Tsisar, Kinetic Model of Stainless Steels Oxidation in Pb Melts, CD-ROM of Eurocorr'05, Lisbon, Portugal (2005).Google Scholar
  7. 7.
    O. Yeliseyeva and V. Tsisar, “Comparison of oxidation of ferritic-martensitic steel EP-823 and armco-Fe in Pb melt saturated by oxygen,” J. Corrosion Sci. Eng., 7, 37–49 (2006).Google Scholar
  8. 8.
    Y. Kurata, M. Futakawa, and S. Saito, “Comparison of the corrosion behavior of austenitic and ferritic/martensitic steels exposed to static liquid Pb-Bi at 450 and 550 °C,” J. Nucl. Mater., 343, 333–340 (2005).CrossRefADSGoogle Scholar
  9. 9.
    A.L. Johnson et al., “Spectroscopic and microscopic investigation of the corrosion of 316/316L stainless steel by lead-bismuth eutectic (LBE) at elevated temperatures: importance of surface preparation,” J. Nucl. Mater., 328, No. 2–3, 88–96 (2004).CrossRefADSGoogle Scholar
  10. 10.
    G. Benamati, C. Fazio, H. Piankova, and A. Rusanov, “Temperature effect on the corrosion mechanism of austenitic and martensitic steels in lead-bismuth,” J. Nucl. Mater., 301, No. 1, 23–27 (2002).CrossRefADSGoogle Scholar
  11. 11.
    D. Briceño, S. Crespo, M. Muñoz, and F. H. Arroyo, “Influence of temperature on the oxidation/corrosion process of F82Hmod. martensitic steel in lead-bismuth,” J. Nucl. Mater., 303, No. 2–3, 137–146 (2004).Google Scholar
  12. 12.
    G. Muller, A. Heinzel, J. Konys, et al., “Results of steel corrosion tests in flowing liquid Pb/Bi at 420-600°C after 2000 h,” J. Nucl. Mater., 301, No. 1, 40–46 (2002).CrossRefADSGoogle Scholar
  13. 13.
    Y. Kurata, M. Futakawa, K. Kikuchi, et al., “Corrosion studies in liquid Pb-Bi alloy at JAERI: R & D program and first experimental results,” J. Nucl. Mater., 301, No. 1, 28–34 (2002).CrossRefADSGoogle Scholar
  14. 14.
    F. Barbier and A. Rusanov, “Corrosion behavior of steels in flowing lead-bismuth,” J. Nucl. Mater., 296, No. 1–3, P. 231–236 (2001).CrossRefADSGoogle Scholar
  15. 15.
    J. Zhang, N. Li, Y. Chen, and A. Rusanov, “Corrosion behaviors of US steels in flowing lead-bismuth eutectic (LBE),” J. Nucl. Mater., 336, No. 1, 1–10 (2005).CrossRefADSGoogle Scholar
  16. 16.
    M. Kondo, M. Takahashi, N. Sawada, and K. Hata, “Corrosion of steels in lead-bismuth flow,” J. Nucl. Sci. Techn., 43, No. 2, 107–116 (2006).CrossRefGoogle Scholar
  17. 17.
    B. F. Gromov, Yu. I. Orlov, P. N. Martynov, and V. A. Gulevskii, “Problems in the technology of heavy liquid metal coolants (lead-bismuth, lead),” in: Heavy Liquid Metal Coolants in Nuclear Technologies [in Russian], Vol. 1, Obninsk (1999), pp. 92–107.Google Scholar
  18. 18.
    E. Fromm and E. Gebhardt, Gases and Carbon in Metals, Springer, Berlin (1976).Google Scholar
  19. 19.
    V. A. Blokhin, M. N. Ivanovskii, T. A. Kuvshinchikova, et al., Structure, Atomic Dynamics, Thermodynamics, and Impurity State of Melts of Lead and Bismuth (Current State of the Art): A Review [in Russian], FÉI-0290, TsNIIavtominform, Moscow (2000), p. 76.Google Scholar
  20. 20.
    V. P. Tsisar, V. N. Fedirko, and O. I. Eliseeva, “Corrosion resistance of steels and armco-Fe in lead melt saturated with oxygen at 550°C,” Vopr. Atom. Nauki Tekhn., No. 2, 155–159 (2007).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • O. I. Eliseeva
    • 1
  • V. P. Tsisar
    • 1
  • I. I. Ivanova
    • 2
  • A. M. Demidik
    • 2
  1. 1.Karpenko Physico-Mechanical InstituteNational Academy of Sciences of UkraineL’vivUkraine
  2. 2.Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations