Mechanical properties of powder titanium at different production stages. I. Densification curves for titanium powder billets

  • E. M. Borisovskaya
  • V. A. Nazarenko
  • Yu. N. Podrezov
  • O. S. Koryak
  • Ya. I. Evich
  • V. F. Gorban’
Sintered Metals and Alloys


The mechanical behavior of titanium powder billets at all production stages is examined. The dependence of how mechanical properties are formed on the structure is established. The compaction of a powder pressed in a rigid die mold, which is the initial stage of the production process, is analyzed. The experimental dependence of the compacting force on porosity is examined. The results are compared with theoretical data available.


powder titanium mechanical properties strain hardening 


  1. 1.
    V. S. Ustinov, Yu. G. Olesov, L. N. Antipin, and V. A. Drozdenko, Powder Metallurgy of Titanium [in Russian], Metallurgiya, Moscow (1973).Google Scholar
  2. 2.
    M. Yu. Bal'shin, Powder Physical Metallurgy [in Russian], Metallurgizdat, Moscow (1948).Google Scholar
  3. 3.
    G. M. Zhdanovich, Pressing Theory of Metal Powders [in Russian], Metallurgiya, Moscow (1969), p. 264.Google Scholar
  4. 4.
    M. Yu. Bal'shin, N. V. Zakharyan, and N. V. Manukyan, “Calculation of the relationship between compaction pressure and the density of metal powders,” Powder Metall. Met. Ceram., 12, No. 5, 372–375 (1973).CrossRefGoogle Scholar
  5. 5.
    R. W. Heckel, “Advanced experimental techniques in powder metallurgy,” in: Perspectives in Powder Metallurgy, Vol. 5, New York-London (1970), p. 139.Google Scholar
  6. 6.
    J. L. Bruckpool, Modern Developments in PM, Vol. 5: Materials and Properties, New York (1968), pp. 201–216.Google Scholar
  7. 7.
    S. A. Firstov, A. N. Demidik, I. I. Ivanova, et al., Structure and Strength of Powder Materials [in Russian], S. A. Firstov and M. Shlessar (eds.), Naukova Dumka, Kiev (1993), p. 175.Google Scholar
  8. 8.
    Yu. N. Podrezov, “Nanocrystalline structure formation under severe plastic deformation and its influence on mechanical properties,” Fiz. Tekh. Vys. Davl., 15, No. 1, 11–18 (2005).Google Scholar
  9. 9.
    S. A. Firstov, Yu. N. Podrezov, N. I. Danilenko, et al., “Roles of relaxation processes in hardening of nanocrystalline materials produced by severe plastic deformation,” Fiz. Tekh. Vys. Davl., 13, No. 3, 37–47 (2003).Google Scholar
  10. 10.
    E. M. Borisovskaya, D. G. Verbilo, V. A. Pisarenko, et al., “Structurization and mechanical properties of deformed titanium,” Fiz. Tekh. Vys. Davl., 17, No. 2, 110–118 (2007).Google Scholar
  11. 11.
    I. F. Martynova, “Physical features of plastic deformation of porous bodies,” in: Rheological Models and Deformation of Porous Powder and Composite Materials [in Russian], Naukova Dumka, Kiev (1985), pp. 98–105.Google Scholar
  12. 12.
    D. C. Drucker and W. Prager, “Soil mechanics and plastic analysis of limit design,” Quarterly of Applied Mathematics, 10, 157–175 (1952).Google Scholar
  13. 13.
    G. Porial, E. Euvrard, P. Tailhades, and A. Rousset, “Relationship between compaction pressure, green density, and green strength of powder compacts used in thermal batteries,” Powder Metal., 42, No. 1, 34–40 (1999).CrossRefGoogle Scholar
  14. 14.
    E. Yu. Vyal' and A. M. Laptev, “Strength of unsintered powder compacts with axial and radial loading,” Powder Metall. Met. Ceram., 41, No. 5–6, 249–252 (2002).CrossRefGoogle Scholar
  15. 15.
    O. Coube and H. Riedel, “Numerical simulation of metal powder die compaction with special consideration of cracking, Powder Metal., 43, No. 2, 123–131 (2000).CrossRefGoogle Scholar
  16. 16.
    I. F. Martynova and V. V. Skorokhod, “Densification of porous metal during volume plastic deformation in the absence of work-hardening,” Powder Metall. Met. Ceram., 15, No. 5, 343–345 (1976).CrossRefGoogle Scholar
  17. 17.
    V. V. Skorokhod, I. F. Martynova, and V. P. Shklyarenko, “Irreversible deformation of a sintered porous body of a work-hardening plastic metal. II. Experimental part,” Powder Metall. Met. Ceram., 16, No. 5, 369–375 (1977).CrossRefGoogle Scholar
  18. 18.
    I. F. Martynova and M. B. Shtern, “An equation for the plasticity of a porous solid allowing for true strains of the matrix material,” Powder Metall. Met. Ceram., 17, No. 1, 17–21 (1978).CrossRefGoogle Scholar
  19. 19.
    M. S. Koval'chenko, “Mechanical properties of isotopic porous materials,” Powder Metall. Met. Ceram., 35, No. 9–10, 561–568 (1996).CrossRefGoogle Scholar
  20. 20.
    M. S. Koval'chenko, “Elasticity and viscosity of isotropic porous materials,” Powder Metall. Met. Ceram., 42, No. 1–2, 81–87 (2003).CrossRefGoogle Scholar
  21. 21.
    Yu. N. Podrezov, A. G. Kostornov, N. I. Lugovoi, et al., “Elastic modulus of highly porous nickel-based materials,” Powder Metall. Met. Ceram., 36, No. 3–4, 203–206 (1997).CrossRefGoogle Scholar
  22. 22.
    Yu. N. Podrezov, L. I. Chernyshev, N. I. Lugovoi, et al., “Effect of the pore space structure in a biporous material on the elastic modulus. Phenomenological analysis,” Powder Metall. Met. Ceram., 33, No. 11–12, 628–632 (1995).Google Scholar
  23. 23.
    Yu. N. Podrezov, N. I. Lugovoi, V. N. Slyunyaev, and D. G. Verbilo, “Effect of the pore space structure on deformation energy absorption during compression of high-porosity composites. Part I. Low hardening stage,” Powder Metall. Met. Ceram., 39, No. 7–8, 407–413 (2000).Google Scholar
  24. 24.
    Yu. V. Mil'man, S. I. Chugunova, and I. V. Goncharova, “Indentation analysis of the mechanical behavior of low-plastic materials,” in: Structure and Properties of Promising Materials, A. E. Potekaev (ed.), Izd. Nauch. Tekh. Lit., Tomsk (2006), pp. 301–322.Google Scholar
  25. 25.
    B. A. Galanov, Yu. V. Mil'man, S. I. Chugunova, and I. V. Goncharova, “Indentation analysis of the mechanical properties of very hard materials,” Sverkhtverd. Mater., No. 3, 25–38 (1999).Google Scholar
  26. 26.
    Yu. V. Milman, “Plasticity characteristic obtained by indentation,” J. Physics D: Applied Physics, 41, No. 7, 1–9 (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • E. M. Borisovskaya
    • 1
  • V. A. Nazarenko
    • 1
  • Yu. N. Podrezov
    • 1
  • O. S. Koryak
    • 1
  • Ya. I. Evich
    • 1
  • V. F. Gorban’
    • 1
  1. 1.Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations