Skip to main content
Log in

Mechanical properties of powder titanium at different production stages. I. Densification curves for titanium powder billets

  • Sintered Metals and Alloys
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

The mechanical behavior of titanium powder billets at all production stages is examined. The dependence of how mechanical properties are formed on the structure is established. The compaction of a powder pressed in a rigid die mold, which is the initial stage of the production process, is analyzed. The experimental dependence of the compacting force on porosity is examined. The results are compared with theoretical data available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Ustinov, Yu. G. Olesov, L. N. Antipin, and V. A. Drozdenko, Powder Metallurgy of Titanium [in Russian], Metallurgiya, Moscow (1973).

    Google Scholar 

  2. M. Yu. Bal'shin, Powder Physical Metallurgy [in Russian], Metallurgizdat, Moscow (1948).

    Google Scholar 

  3. G. M. Zhdanovich, Pressing Theory of Metal Powders [in Russian], Metallurgiya, Moscow (1969), p. 264.

    Google Scholar 

  4. M. Yu. Bal'shin, N. V. Zakharyan, and N. V. Manukyan, “Calculation of the relationship between compaction pressure and the density of metal powders,” Powder Metall. Met. Ceram., 12, No. 5, 372–375 (1973).

    Article  Google Scholar 

  5. R. W. Heckel, “Advanced experimental techniques in powder metallurgy,” in: Perspectives in Powder Metallurgy, Vol. 5, New York-London (1970), p. 139.

    CAS  Google Scholar 

  6. J. L. Bruckpool, Modern Developments in PM, Vol. 5: Materials and Properties, New York (1968), pp. 201–216.

  7. S. A. Firstov, A. N. Demidik, I. I. Ivanova, et al., Structure and Strength of Powder Materials [in Russian], S. A. Firstov and M. Shlessar (eds.), Naukova Dumka, Kiev (1993), p. 175.

    Google Scholar 

  8. Yu. N. Podrezov, “Nanocrystalline structure formation under severe plastic deformation and its influence on mechanical properties,” Fiz. Tekh. Vys. Davl., 15, No. 1, 11–18 (2005).

    CAS  Google Scholar 

  9. S. A. Firstov, Yu. N. Podrezov, N. I. Danilenko, et al., “Roles of relaxation processes in hardening of nanocrystalline materials produced by severe plastic deformation,” Fiz. Tekh. Vys. Davl., 13, No. 3, 37–47 (2003).

    Google Scholar 

  10. E. M. Borisovskaya, D. G. Verbilo, V. A. Pisarenko, et al., “Structurization and mechanical properties of deformed titanium,” Fiz. Tekh. Vys. Davl., 17, No. 2, 110–118 (2007).

    CAS  Google Scholar 

  11. I. F. Martynova, “Physical features of plastic deformation of porous bodies,” in: Rheological Models and Deformation of Porous Powder and Composite Materials [in Russian], Naukova Dumka, Kiev (1985), pp. 98–105.

    Google Scholar 

  12. D. C. Drucker and W. Prager, “Soil mechanics and plastic analysis of limit design,” Quarterly of Applied Mathematics, 10, 157–175 (1952).

    Google Scholar 

  13. G. Porial, E. Euvrard, P. Tailhades, and A. Rousset, “Relationship between compaction pressure, green density, and green strength of powder compacts used in thermal batteries,” Powder Metal., 42, No. 1, 34–40 (1999).

    Article  Google Scholar 

  14. E. Yu. Vyal' and A. M. Laptev, “Strength of unsintered powder compacts with axial and radial loading,” Powder Metall. Met. Ceram., 41, No. 5–6, 249–252 (2002).

    Article  Google Scholar 

  15. O. Coube and H. Riedel, “Numerical simulation of metal powder die compaction with special consideration of cracking, Powder Metal., 43, No. 2, 123–131 (2000).

    Article  CAS  Google Scholar 

  16. I. F. Martynova and V. V. Skorokhod, “Densification of porous metal during volume plastic deformation in the absence of work-hardening,” Powder Metall. Met. Ceram., 15, No. 5, 343–345 (1976).

    Article  Google Scholar 

  17. V. V. Skorokhod, I. F. Martynova, and V. P. Shklyarenko, “Irreversible deformation of a sintered porous body of a work-hardening plastic metal. II. Experimental part,” Powder Metall. Met. Ceram., 16, No. 5, 369–375 (1977).

    Article  Google Scholar 

  18. I. F. Martynova and M. B. Shtern, “An equation for the plasticity of a porous solid allowing for true strains of the matrix material,” Powder Metall. Met. Ceram., 17, No. 1, 17–21 (1978).

    Article  Google Scholar 

  19. M. S. Koval'chenko, “Mechanical properties of isotopic porous materials,” Powder Metall. Met. Ceram., 35, No. 9–10, 561–568 (1996).

    Article  Google Scholar 

  20. M. S. Koval'chenko, “Elasticity and viscosity of isotropic porous materials,” Powder Metall. Met. Ceram., 42, No. 1–2, 81–87 (2003).

    Article  Google Scholar 

  21. Yu. N. Podrezov, A. G. Kostornov, N. I. Lugovoi, et al., “Elastic modulus of highly porous nickel-based materials,” Powder Metall. Met. Ceram., 36, No. 3–4, 203–206 (1997).

    Article  CAS  Google Scholar 

  22. Yu. N. Podrezov, L. I. Chernyshev, N. I. Lugovoi, et al., “Effect of the pore space structure in a biporous material on the elastic modulus. Phenomenological analysis,” Powder Metall. Met. Ceram., 33, No. 11–12, 628–632 (1995).

    Google Scholar 

  23. Yu. N. Podrezov, N. I. Lugovoi, V. N. Slyunyaev, and D. G. Verbilo, “Effect of the pore space structure on deformation energy absorption during compression of high-porosity composites. Part I. Low hardening stage,” Powder Metall. Met. Ceram., 39, No. 7–8, 407–413 (2000).

    Google Scholar 

  24. Yu. V. Mil'man, S. I. Chugunova, and I. V. Goncharova, “Indentation analysis of the mechanical behavior of low-plastic materials,” in: Structure and Properties of Promising Materials, A. E. Potekaev (ed.), Izd. Nauch. Tekh. Lit., Tomsk (2006), pp. 301–322.

    Google Scholar 

  25. B. A. Galanov, Yu. V. Mil'man, S. I. Chugunova, and I. V. Goncharova, “Indentation analysis of the mechanical properties of very hard materials,” Sverkhtverd. Mater., No. 3, 25–38 (1999).

    Google Scholar 

  26. Yu. V. Milman, “Plasticity characteristic obtained by indentation,” J. Physics D: Applied Physics, 41, No. 7, 1–9 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Podrezov.

Additional information

__________

Translated from Poroshkovaya Metallurgiya, Vol. 47, No. 7–8 (462), pp. 43–52, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borisovskaya, E.M., Nazarenko, V.A., Podrezov, Y.N. et al. Mechanical properties of powder titanium at different production stages. I. Densification curves for titanium powder billets. Powder Metall Met Ceram 47, 406–413 (2008). https://doi.org/10.1007/s11106-008-9035-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-008-9035-1

Keywords

Navigation