Advertisement

Powder Metallurgy and Metal Ceramics

, Volume 47, Issue 1–2, pp 124–128 | Cite as

Growth kinetics of SiO2 nanofilm on MoSi2 in anodic polarization

  • V. A. Lavrenko
  • A. D. Chirkin
  • V. N. Talash
  • A. D. Panasyuk
Article

Abstract

The anodic oxidation of MoSi2 ceramics in 3% NaCl solution is shown to be a multistage process. Auger electron spectroscopy established that only silica forms on the MoSi2 surface between 1.5 and 2.0 V, while molybdenum passes completely into solution. The growth kinetics of silica is studied using chronoamperometry under controlled potential conditions. The resulting kinetic curves show two stages. At the first stage, the reaction rate (current density) falls by one order for the first few minutes when SiO2 nanofilm begins to form. Then the diffusion-limited process, which fits parabolic kinetics, is established. On the whole, the model describing the electrochemical formation of oxide nanofilm on molybdenum disilicide agrees with the Mott-Cabrera theory, which was earlier proposed for high-temperature oxidation processes.

Keywords

MoSi2 anodic oxidation silica film diffusion parabolic kinetics Mott-Cabrera theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Hansson, M. Halvarsson, J. E. Tang, et al., “Oxidation behavior of a MoSi2-based composite in different atmospheres in the low temperature range (400–550°C),” J. Europ. Ceram. Soc., 24, 3559–3573 (2004).CrossRefGoogle Scholar
  2. 2.
    K. Hansson, J. E. Tang, M. Halvarsson, et al., “The beneficial effect of water vapour on the oxidation at 600 and 700°C of a MoSi2-based composite,” J. Europ. Ceram. Soc., 25, 1–11 (2005).CrossRefGoogle Scholar
  3. 3.
    F. Zhang, L. Zhang, A. Shan, et al., “Oxidation of stoichiometric poly-and single-crystalline MoSi2 at 773 K,” Intermetallics, 14, 406–411 (2006).CrossRefGoogle Scholar
  4. 4.
    G. Jang, R. Kieffer, and H. Kogler, “Korrosionsprüfungen an Siliziden der Übergangsmetalle,” Werkstoffe und Korrosion, 21, 699–703 (1970).CrossRefGoogle Scholar
  5. 5.
    R. D. Armstrong and A. F. Douglas, “The anodic oxidation of the binary compounds of the transition elements in sulphuric acid,” J. Appl. Electrochem., 2, 143–149 (1972).CrossRefGoogle Scholar
  6. 6.
    M. Herranen, A. D. Bauer, J.-O. Carlsson, et al., “Corrosion properties of thin molybdenum silicide films,” Surf. Coat. Tech., 96, 245–254 (1997).CrossRefGoogle Scholar
  7. 7.
    A. D. Chirkin, V. A. Lavrenko, A. D. Panasyuk, et al., “Formation of oxide nanofilms over titanium, molybdenum, and tungsten disilicides in anodic polarization,” Dop. NAN Ukrainy, 12, 96–101 (2006).Google Scholar
  8. 8.
    Y. Q. Liu, G. Shao, and P. Tsakiropoulos, “On the oxidation behavior of MoSi2,” Intermetallics, 9, 125–136 (2001).CrossRefGoogle Scholar
  9. 9.
    D. L. Cocke, R. Schennach, M. A. Hossain, et al., “The low-temperature thermal oxidation of copper, Cu3O2, and its influence on past and future studies,” Vacuum, 79, 71–83 (2005).CrossRefGoogle Scholar
  10. 10.
    G. Tremiliosi-Filho, L. H. Dall’Antonia, and G. Jerkiewicz, “Growth of surface oxides on gold electrodes under well-defined potential, time and temperature conditions,” J. Electroanal. Chem., 578, 1–8 (2005).CrossRefGoogle Scholar
  11. 11.
    G. C. Willis, G. B. Adams, and P. Van Rysselberghe, “Electrolytic formation of insulating oxide films on zirconium. II. Electrode kinetics at constant voltage,” Electroch. Acta., 9, 93–101 (1964).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • V. A. Lavrenko
    • 1
  • A. D. Chirkin
    • 1
  • V. N. Talash
    • 1
  • A. D. Panasyuk
    • 1
  1. 1.Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKiev

Personalised recommendations