Advertisement

Powder Metallurgy and Metal Ceramics

, Volume 47, Issue 1–2, pp 47–53 | Cite as

Making and structural features of Ti-N-B and Ti-N-C nanocomposites

  • A. I. Bykov
  • I. I. Timofeeva
  • L. A. Klochkov
  • A. V. Ragulya
  • L. P. Isaeva
  • V. S. Urbanovich
  • M. M. Ristic
Article

Abstract

The paper examines the high-pressure sintering of nanograined ceramic polycrystals based on TiN-TiB2 and TiC0.5N0.5 refractory compounds. Using the optimum pressure (up to 4 GPa) allows keeping the initial nanostate (TiN-TiB2 and TiC0.5N0.5) and obtaining high-density ceramics with enhanced mechanical properties. An x-ray structural analysis is used to examine how the TiN-TiB2 and TiC0.5N0,5 crystalline structure evolves during temperature-pressure treatment, which produces new ceramic materials. Based on the properties of the polycrystalline materials obtained, the temperature-time mode for the consolidation of initial nanopowders is determined to ensure favorable parameters of sintered nanograined ceramics.

Keywords

sintering high pressure refractory compounds nanoceramics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. V. Samsonov and I. M. Vinnitskii, Refractory Compounds [in Russian], Metallurgiya, Moscow (1976), p. 560.Google Scholar
  2. 2.
    T. Ya. Kosolapova (ed.), Properties, Production, and Use of Refractory Compounds [in Russian], Metallurgiya, Moscow (1986).Google Scholar
  3. 3.
    G. V. Samsonov, Developing Inorganic Substances and Materials with Preset Properties [in Russian], Vol. 15, Otd. Tekh. Nauk, SANI (1978), pp. 4–15.Google Scholar
  4. 4.
    A. Bykov, I. Timofeeva, and A. Ragulya, “Preparation of highly dispersed materials on the basis of refractory nitrides under high pressures,” Ceramic Sci. Tech., 69, No. 7–8, pp. 255–260 (2004).Google Scholar
  5. 5.
    A. I. Bykov, A. V. Ragulya, I. I. Timofeeva, et al., “Sintering under high pressure—an efficient method for preparation of ceramic nanocomposites,” in: Proc. Int. Conf. on Materials and Coatings in Extreme Conditions, Inst. Probl. Materialoved. NAN Ukrainy, Kiev (2004), pp. 208–209.Google Scholar
  6. 6.
    A. I. Bykov, I. V. Gridneva, L. P. Isaeva, et al., “Consolidation of TiN-TiB2 composite powder under high pressure and properties of nanocomposite,” in: Proc. 3rd Int. Workshop, Nanostructured Materials-2004, Inst. Tepl. Massoobm. NAN Belarusi, Minsk (2004), pp. 144–145.Google Scholar
  7. 7.
    G. V. Samsonov, T. I. Serebryakova, and V. A. Neronov, Borides [in Russian], Atomizdat, Moscow (1975), p. 376.Google Scholar
  8. 8.
    G. V. Samsonov, Nitrides [in Russian], Naukova Dumka, Kiev (1969), p. 380.Google Scholar
  9. 9.
    Huang Jow-Lay and Chen Shih-Yih, “Investigation of silicon nitride composites toughened with prenitrided TiB2,” Ceramics International, 21, 77–83 (1995).CrossRefGoogle Scholar
  10. 10.
    J. Won Lee and Z. A. Munir, “Synthesis of dense TiN-TiB2 nanocrystalline composites through mechanical and field activation,” J. Am. Ceram. Soc., 84, No. 6, 1209–1216 (2002).Google Scholar
  11. 11.
    T. I. Serebryakova, V. A. Neronov, and P. D. Peshev, High-Temperature Borides [in Russian], Metallurgiya, Moscow (1991), p. 368.Google Scholar
  12. 12.
    B. E. Warren, X-ray Studies of Deformed Metals, Prog. Metal Phys., 8, 147–202 (1959).CrossRefGoogle Scholar
  13. 13.
    S. S. Gorelik, L. N. Rastorguev, and Yu. A. Skakov, X-Ray and Electron Optical Analysis [in Russian], Metallurgiya, Moscow (1970), p. 366.Google Scholar
  14. 14.
    A. Bykov, G. Oleynik, A. Ragulya, et al., “Mechanism of consolidation of nanoparticles in system diamond-boron oxide at high pressure and temperature,” in: Materials Science Forum on Recent Developments in Advanced Materials and Processes, Trans. Tech. Publication, Zurich (2006), pp. 189–194.Google Scholar
  15. 15.
    G. Williamson and R. Smallmen, “Dislocation density x-ray determination,” Phil. Mag., 1, 34 (1956).CrossRefGoogle Scholar
  16. 16.
    G. V. Samsonov, I. F. Pryadko, and L. F. Pryadko, A Configurational Model of Matter, Plenum, New York (1973).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • A. I. Bykov
    • 1
  • I. I. Timofeeva
    • 1
  • L. A. Klochkov
    • 1
  • A. V. Ragulya
    • 1
  • L. P. Isaeva
    • 1
  • V. S. Urbanovich
    • 2
  • M. M. Ristic
    • 3
  1. 1.Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKiev
  2. 2.Joint Institute of Solid State and Semiconductor PhysicsNational Academy of Sciences of ByelorussiaMinsk
  3. 3.Serbian Academy of Sciences and ArtsBelgrade

Personalised recommendations