Powder Metallurgy and Metal Ceramics

, Volume 46, Issue 7–8, pp 385–391 | Cite as

Effect of fine structure on mechanical properties of hot-forged powder steels

  • V. A. Maslyuk
  • A. A. Mamonova
  • A. I. Danilenko


Comparative analysis of the substructural parameters and mechanical properties of hot-forged steels reveals regular changes in the mechanical characteristics depending on the degree of imperfection. It is shown that higher imperfection at lower forging temperatures of porous billets can increase the strain hardening of particles. The maximum strain hardening of carbon steels is revealed at the maximal structural imperfection and a density of 7.77 g/cm3 after forging a billet heated to 1100°C. The high strain hardening of chromium steel results from high dispersion of coherent scattering regions.


temperature forging deformation imperfection mechanical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Ya. Bulanov and V. N. Nebol’sinov, Predicting Properties of Sintered Materials [in Russian], Nauka, Moscow (1981), p. 152.Google Scholar
  2. 2.
    V. A. Maslyuk, A. A. Mamonova, and A. K. Grabchak, “Effect of porous billet forging temperature on parameters of the fin structure of the ferritic phase in powder carbon steel,” Powder Metall. Met. Ceram., 41, No. 7–8, 355–359 (2002).CrossRefGoogle Scholar
  3. 3.
    V. A. Maslyuk and A. A. Mamonova, “Ferritic fine structure characteristics in hot die forged powder steels. I. Effect of heating temperature during die forging on ferritic fine structure in specimens of powder technical grade iron and carbon steels,” Powder Metall. Met. Ceram., 44, No. 5–6, 294–303 (2005).CrossRefGoogle Scholar
  4. 4.
    V. A. Maslyuk and A. A. Mamonova, “Features of the fine structure of ferrite in hot-work die powder steels. II. Influence of temperature of heating for drop-forging on fine structure of ferrite in different layers of samples of powder chromium steel,” Powder Metall. Met. Ceram., 44, No. 9–10, 505–510 (2005).CrossRefGoogle Scholar
  5. 5.
    Yu. G. Dorofeev, L. G. Marinenko, and V. I. Ustimenko, Structural Powder Materials and Products [in Russian], Metallurgiya, Moscow (1986), p. 144.Google Scholar
  6. 6.
    Yu. M. Mil’man, “New techniques for micromechanical testing of materials by local loading with a hard indenter,” in: Modern Materials Science of the Twenty-First Century [in Ukrainian], Kiev (1998), pp. 637–656.Google Scholar
  7. 7.
    B. A. Galanov, Yu. V. Mil’man, S. I. Chugunova, and I. V. Goncharova, “Investigating the mechanical properties of very hard materials by indentation,” Sverkhtverdye Materialy, No. 3, 25–38 (1999).Google Scholar
  8. 8.
    Yu. V. Mil’man, O. N. Galanov, S. I. Chugunova, and I. V. Goncharova, “Determining mechanical properties of low-ductility materials by indentation,” Ceramics 50, Polish Ceramic Bulletin 12, Izd. Pol’sk. Akad. Nauk, Krakov (1996), pp. 95–102.Google Scholar
  9. 9.
    V. S. Zolotorevskii, Mechanical Properties of Metals [in Russian], Mosk. Inst. Stali i Splavov, Moscow (1998), p. 400.Google Scholar
  10. 10.
    Yu. G. Dorofeev, Dynamic Hot Pressing in Metal Ceramics [in Russian], Metallurgiya, Moscow (1972), p. 176.Google Scholar
  11. 11.
    A. I. Ermak, Studying the Effect of Temperature-Time Modes and Some Other Factors on the Densification, Structure, and Properties of Compacts from Metal Powders in Dynamic Hot Pressing [in Russian], Author’s Abstract of PhD Thesis, Novocherkassk (1971), p. 24.Google Scholar
  12. 12.
    B. N. Arzamasov, I. I. Sidorin, G. S. Kosolapov, et al., Materials Science [in Russian], Mashinostroenie, Moscow (1986), p. 384.Google Scholar
  13. 13.
    Yu. G. Dorofeev and V. T. Prutsakov, “Mechanical properties and fine structure of compacts from static and dynamic pressing,” in: Research in Powder and Cutting Metallurgy [in Russian], Novocherkas. Politekhn. Inst., Novocherkassk (1969), p. 17.Google Scholar
  14. 14.
    I. M. Fedorchenko, A. E. Kushchevskii, V. T. Mozol’, and V. F. Chudovskii, “Densification behavior of metal powders during pressing,” Powder Metall. Met. Ceram., 26, No. 3, 196–199 (1987).CrossRefGoogle Scholar
  15. 15.
    M. A. Krivoglaz, Diffraction of X-Rays and Neutrons in Imperfect Crystals [in Russian], Naukova Dumka, Kiev (1983), p. 408.Google Scholar
  16. 16.
    I. D. Radomysel’skii and I. P. Kholodnyi, “Sintered constructional alloy steels,” Powder Metall. Met. Ceram., 14, No. 6, pp. 478–486 (1975).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • V. A. Maslyuk
    • 1
  • A. A. Mamonova
    • 1
  • A. I. Danilenko
    • 1
  1. 1.Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKiev

Personalised recommendations