Advertisement

Powder Metallurgy and Metal Ceramics

, Volume 46, Issue 3–4, pp 175–181 | Cite as

High-temperature air oxidation of coatings based on eutectic (β-NiAl + γ-Re) alloys and NiAl intermetallide

  • V. E. Oliker
  • M. Yu. Barabash
  • E. F. Grechishkin
  • I. I. Timofeeva
  • T. Ya. Gridasova
Article

Abstract

High-temperature air oxidation (up to 1100°C) of detonation coatings made of NiAl intermetallide and eutectic (β-NiAl + γ-Re) alloys is examined with x-ray diffraction and electron microscopy. A substantial difference between the air oxidation mechanisms of these coatings is revealed. The key factor that governs the air oxidation of these coatings is the ratio between rates at which aluminum and nickel oxides are formed.

Keywords

nickel aluminum intermetallide eutectic alloy high-temperature oxidation surface structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. B. Henderson, J. Hannis, G. McColvin, and G. Ogle, “Materials issues for the design of industrial gas turbines,” in: G. Fuchs et al. (eds), Advanced Materials and Processes for Gas Turbines, The Minerals, Metals & Materials Society, Warrendale, Pennsylvania (2003), pp. 3–13.Google Scholar
  2. 2.
    G G. L. Ericson, “The development and application of CMSX-10,” in: R. D. Kissinger et al. (eds.), Superalloys 1996, The Minerals, Metals & Materials Society, Warrendale, Pennsylvania (1996), pp. 35–44.Google Scholar
  3. 3.
    W. S. Walston, K. S. O’Hara, E. W. Ross, et al., “Rene N6: Third generation single crystal superalloy,” in: Superalloys 1996, The Minerals, Metals & Materials Society, Warrendale, Pennsylvania (1996), pp. 27–34.Google Scholar
  4. 4.
    Yu. M. Lakhtin, G. A. Slisarenko, A. N. Prudnikov, and B. S. Starokonev, “Powder Ni-Al intermetallide coatings,” Metalloved. Term. Obrab. Met., No. 9, 29–31 (1980).Google Scholar
  5. 5.
    Yu. A. Tamarin, Heat-Resistant Diffusion Coatings of Turbine Engine Blades [in Russian], Mashinostroenie, Moscow (1978), p. 136.Google Scholar
  6. 6.
    O. M. Barabash, M. Yu. Barabash, and V. E. Oliker, “Effect of rhenium on formation of the structure of eutectic alloys based on β-NiAl + γ-Re,” Powder Metall. Met. Ceram., 42, No. 3–4, 180–183 (2003).Google Scholar
  7. 7.
    V. E. Oliker, M. Yu. Barabash, E. F. Grechishkin, et al., “Mechanical properties of eutectic alloys β-NiAl + γ-Re and spray coatings,” Powder Metall. Met. Ceram., 45, No. 3–4, 173–180 (2006).CrossRefGoogle Scholar
  8. 8.
    M. Reid, M. J. Pomeroy, and J. S. Robinson, “Microstructural stability of a Ni-Pt-Al coating on CMSX-10 alloy at 950–1000°C,” Mater. High Temperatures, 20, No. 4, 467–474 (2003).Google Scholar
  9. 9.
    J. Doychak, J. L. Smialek, and T. E. Mitchell, “Transient oxidation of single-crystal beta-NiAl, ” Metall Trans., 20A, 499–518 (1989).Google Scholar
  10. 10.
    H. Svensson, J. Angenete, K. Stiller, and V. Langer, “Microstructural studies of NiAl-based model alloys and commercial coatings after isothermal oxidation,” Mater. High Temper., 20, No. 3, 421–427 (2001).CrossRefGoogle Scholar
  11. 11.
    A. Y. Lozovoi, A. Alavi, and M. W. Finnis, “Surface stoichiometry and the initial oxidation of NiAl (110),” Phys. Rev. Let., 85, No. 3, 610–613 (2003).CrossRefGoogle Scholar
  12. 12.
    M. Kh. Karapet’yants and M. L. Karapet’yants, Basic Thermodynamic Constants for Inorganic and Organic Substances [in Russian], Khimiya, Moscow (1968), p. 472.Google Scholar
  13. 13.
    M. P. Arbuzov and V. G. Chuprina, “X-ray diffraction study of the oxidation of Ni3(Al, Ti) alloys,” Powder Metall. Met. Ceram., 14, No. 7, 572–575 (1975).CrossRefGoogle Scholar
  14. 14.
    L. G. Reiter, Chemistry for Metallurgists. Properties of Important Elements: Handbook, Kiev (1995), p. 139.Google Scholar
  15. 15.
    B. A. Pint, J. A. Haynes, K. L. More, et al., “Composition effects on aluminide oxidation performance: Objectives for improved bond coats,” in: T. M. Pollock, R. D. Kissinger, et al. (eds.), Superalloys 2000, TMS, Warrendale, Pennsylvania (2000), pp. 629–638.Google Scholar
  16. 16.
    C. L. Fu, M. H. Yoo, and K. M. Ho, “Equilibrium point defects in intermetallics with the B2 structure: NiAl and FeAl,” Phys. Rev., 48. 6712–6715 (1993).CrossRefGoogle Scholar
  17. 17.
    Y. Mishin and D. Fakas, “Atomistic simulation of point defects and diffusion in B2NiAl,” Scripta Mat., 39, No. 4–5, 625–630 (1998).CrossRefGoogle Scholar
  18. 18.
    O. Kubaschewski and B. E. Hopkins, Oxidation of Metals and Alloys, Butterworths, London (1962).Google Scholar
  19. 19.
    E. T. Denisenko and Yu. A. Panfilov, “Oxidation of porous bodies,” Powder Metall. Met. Ceram., 5, No. 10, 799–801 (1966).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • V. E. Oliker
    • 1
  • M. Yu. Barabash
    • 1
  • E. F. Grechishkin
    • 1
  • I. I. Timofeeva
    • 1
  • T. Ya. Gridasova
    • 1
  1. 1.Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKiev

Personalised recommendations