Skip to main content
Log in

High-temperature air oxidation of coatings based on eutectic (β-NiAl + γ-Re) alloys and NiAl intermetallide

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

High-temperature air oxidation (up to 1100°C) of detonation coatings made of NiAl intermetallide and eutectic (β-NiAl + γ-Re) alloys is examined with x-ray diffraction and electron microscopy. A substantial difference between the air oxidation mechanisms of these coatings is revealed. The key factor that governs the air oxidation of these coatings is the ratio between rates at which aluminum and nickel oxides are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. B. Henderson, J. Hannis, G. McColvin, and G. Ogle, “Materials issues for the design of industrial gas turbines,” in: G. Fuchs et al. (eds), Advanced Materials and Processes for Gas Turbines, The Minerals, Metals & Materials Society, Warrendale, Pennsylvania (2003), pp. 3–13.

    Google Scholar 

  2. G G. L. Ericson, “The development and application of CMSX-10,” in: R. D. Kissinger et al. (eds.), Superalloys 1996, The Minerals, Metals & Materials Society, Warrendale, Pennsylvania (1996), pp. 35–44.

    Google Scholar 

  3. W. S. Walston, K. S. O’Hara, E. W. Ross, et al., “Rene N6: Third generation single crystal superalloy,” in: Superalloys 1996, The Minerals, Metals & Materials Society, Warrendale, Pennsylvania (1996), pp. 27–34.

    Google Scholar 

  4. Yu. M. Lakhtin, G. A. Slisarenko, A. N. Prudnikov, and B. S. Starokonev, “Powder Ni-Al intermetallide coatings,” Metalloved. Term. Obrab. Met., No. 9, 29–31 (1980).

  5. Yu. A. Tamarin, Heat-Resistant Diffusion Coatings of Turbine Engine Blades [in Russian], Mashinostroenie, Moscow (1978), p. 136.

    Google Scholar 

  6. O. M. Barabash, M. Yu. Barabash, and V. E. Oliker, “Effect of rhenium on formation of the structure of eutectic alloys based on β-NiAl + γ-Re,” Powder Metall. Met. Ceram., 42, No. 3–4, 180–183 (2003).

    CAS  Google Scholar 

  7. V. E. Oliker, M. Yu. Barabash, E. F. Grechishkin, et al., “Mechanical properties of eutectic alloys β-NiAl + γ-Re and spray coatings,” Powder Metall. Met. Ceram., 45, No. 3–4, 173–180 (2006).

    Article  CAS  Google Scholar 

  8. M. Reid, M. J. Pomeroy, and J. S. Robinson, “Microstructural stability of a Ni-Pt-Al coating on CMSX-10 alloy at 950–1000°C,” Mater. High Temperatures, 20, No. 4, 467–474 (2003).

    CAS  Google Scholar 

  9. J. Doychak, J. L. Smialek, and T. E. Mitchell, “Transient oxidation of single-crystal beta-NiAl, ” Metall Trans., 20A, 499–518 (1989).

    CAS  Google Scholar 

  10. H. Svensson, J. Angenete, K. Stiller, and V. Langer, “Microstructural studies of NiAl-based model alloys and commercial coatings after isothermal oxidation,” Mater. High Temper., 20, No. 3, 421–427 (2001).

    Article  Google Scholar 

  11. A. Y. Lozovoi, A. Alavi, and M. W. Finnis, “Surface stoichiometry and the initial oxidation of NiAl (110),” Phys. Rev. Let., 85, No. 3, 610–613 (2003).

    Article  Google Scholar 

  12. M. Kh. Karapet’yants and M. L. Karapet’yants, Basic Thermodynamic Constants for Inorganic and Organic Substances [in Russian], Khimiya, Moscow (1968), p. 472.

    Google Scholar 

  13. M. P. Arbuzov and V. G. Chuprina, “X-ray diffraction study of the oxidation of Ni3(Al, Ti) alloys,” Powder Metall. Met. Ceram., 14, No. 7, 572–575 (1975).

    Article  Google Scholar 

  14. L. G. Reiter, Chemistry for Metallurgists. Properties of Important Elements: Handbook, Kiev (1995), p. 139.

  15. B. A. Pint, J. A. Haynes, K. L. More, et al., “Composition effects on aluminide oxidation performance: Objectives for improved bond coats,” in: T. M. Pollock, R. D. Kissinger, et al. (eds.), Superalloys 2000, TMS, Warrendale, Pennsylvania (2000), pp. 629–638.

    Google Scholar 

  16. C. L. Fu, M. H. Yoo, and K. M. Ho, “Equilibrium point defects in intermetallics with the B2 structure: NiAl and FeAl,” Phys. Rev., 48. 6712–6715 (1993).

    Article  CAS  Google Scholar 

  17. Y. Mishin and D. Fakas, “Atomistic simulation of point defects and diffusion in B2NiAl,” Scripta Mat., 39, No. 4–5, 625–630 (1998).

    Article  CAS  Google Scholar 

  18. O. Kubaschewski and B. E. Hopkins, Oxidation of Metals and Alloys, Butterworths, London (1962).

    Google Scholar 

  19. E. T. Denisenko and Yu. A. Panfilov, “Oxidation of porous bodies,” Powder Metall. Met. Ceram., 5, No. 10, 799–801 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Poroshkovaya Metallurgiya, Vol. 46, No. 3–4 (454), pp. 86–95, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliker, V.E., Barabash, M.Y., Grechishkin, E.F. et al. High-temperature air oxidation of coatings based on eutectic (β-NiAl + γ-Re) alloys and NiAl intermetallide. Powder Metall Met Ceram 46, 175–181 (2007). https://doi.org/10.1007/s11106-007-0028-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-007-0028-2

Keywords

Navigation