Advertisement

Powder Metallurgy and Metal Ceramics

, Volume 45, Issue 7–8, pp 304–310 | Cite as

Features of skeletal composite compaction and sintering

  • V. V. Skorokhod
  • S. M. Solonin
  • V. P. Katashinskii
  • V. V. Panichkina
  • L. L. Kolomiets
  • N. P. Brodnikovskii
  • P. Ya. Radchenko
Theory, Process Technology, Articles Forming

Abstract

Skeletal composites are prepared using highly porous cellular nickel as a volumetrically-bonded framework and features of their compaction and sintering are studied. The skeleton improves composite compactability and may slow down volumetric changes during low-temperature sintering, but it does not affect them during high-temperature sintering. In compacts of skeletal composites at skeleton-ceramic boundaries there is formation of pores that by growing during sintering form a volumetric network of microcracks.

Keywords

skeletal composite highly-porous cellular nickel zonal isolated shrinkage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. M. Karpinos, L. I. Tuchinskii, and L. R. Vishnyakov, New Composite Materials [in Russian], Vishcha Shkola, Kiev (1977).Google Scholar
  2. 2.
    S. M. Kats, V. N. Bogin, S. S. Ordan’yan, et al., “Multilayer metal-oxide composites based on cast plastifying films with powder fillers,” Poroshk. Metall., No. 10, 71–78 (1986).Google Scholar
  3. 3.
    Dovsherman, “Alumina NiCu laminate under thermal shock up to 1000°C,” J. Amer. Ceram. Soc., 84, No. 12, 2819–2826 (2001).CrossRefGoogle Scholar
  4. 4.
    A. E. Rutkovskii and A. A. Ivashin, Composites Based on Sitals Reinforced with Fibers, Preprint [in Russian], Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, Kiev (1998).Google Scholar
  5. 5.
    M. Dariel, H. Iokhei, N. Frumina, and N. Frage, “Composites based on boron carbide impregnated with copper,” Proc. Internat. Conf., “New technology in powder metallurgy and ceramics,” (September 8–12, 2003, Kiev), Akademperiodika, Kiev (2003).Google Scholar
  6. 6.
    P. Ducheyne and L. L. Heneh, “The processing and static mechanical properties of metal fiber reinforced bioglass,” J. Mat. Sci., No. 17, 595–606 (1982).Google Scholar
  7. 7.
    F. K. Ko, “Preform fiber architecture for ceramic-matrix composites,” Cer. Bull., 68, No. 2, 401–414 (1982).Google Scholar
  8. 8.
    V. V. Skorokhod, A. N. Leonov, S. M. Solonin, et al., “Deformation features for highly porous metallic materials,” Poroshk. Metall., Nos. 5–6, 32–39 (2002).Google Scholar
  9. 9.
    V. V. Skorokhod and Yu. M. Solonin, “Relationship between integral and local compaction during sintering of porous bodies,” Poroshk. Metall., No. 12, 25–30 (1983).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. V. Skorokhod
    • 1
  • S. M. Solonin
    • 1
  • V. P. Katashinskii
    • 1
  • V. V. Panichkina
    • 1
  • L. L. Kolomiets
    • 1
  • N. P. Brodnikovskii
    • 1
  • P. Ya. Radchenko
    • 1
  1. 1.Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKiev

Personalised recommendations